当前位置: 首页 > wzjs >正文

泉企业网站建设免费网站模板在哪下载

泉企业网站建设,免费网站模板在哪下载,网站建设与规划试卷,wordpress更换空间大家好啊,欢迎来到本博客( •̀ ω •́ )✧,我将带领大家详细的了解最大公约数的思想与解法。 一、什么是公约数 公约数,也称为公因数,是指两个或多个整数共有的因数。具体来说,如果一个整数能被两个或多个整数整除&…

  大家好啊,欢迎来到本博客( •̀ ω •́ )✧,我将带领大家详细的了解最大公约数的思想与解法。

这只小猫太可爱了,于是我顺手就偷了过来

一、什么是公约数

公约数,也称为公因数,是指两个或多个整数共有的因数。具体来说,如果一个整数能被两个或多个整数整除,那么这个整数就是这些整数的公约数。

例如,考虑整数12和18:

  • 12的因数有 :1, 2, 3, 4, 6, 12

  • 18的因数有:1, 2, 3, 6, 9, 18

12和18的公约数是它们共有的因数,即:1, 2, 3, 6


二、计算最大公约数的方法:

学习数论的一系列算法时,往往直接看算法,是看不懂的。

这里我们先学习数学解法、在给出算法。

1、辗转相除法:(欧几里得算法)
数学:

假设我们有两个正整数 a 和 b,其中 a>b。根据辗转相除法,最大公约数 gcd(a,b) 可以通过以下步骤求得:

  1. 第一步:计算 a mod b,得到余数 r。

  2. 第二步:将 a 替换为 b,将 b 替换为 r。

  3. 第三步:重复上述步骤,直到 b=0 时,此时 a 即为最大公约数。

下方用(18、12)举例。

如图:

代码:
简约背诵版:
#include "iostream"
using namespace std;
// 求公约数
int gcd(int a, int b){while(a%b!=0){int c = a%b;a=b;b=c;}return b;
}int main(){int a,b;a = 18;b = 12;cout<<func(a,b)<<endl;return 0;
}
解释版:
// 包含输入输出流头文件,用于使用 cin 和 cout 进行输入输出操作
#include <iostream>// 使用标准命名空间,这样就可以直接使用标准库中的类和函数,而无需加 std:: 前缀
using namespace std;/*** 函数功能:计算两个整数的最大公约数(Greatest Common Divisor, GCD)* 参数:*      a: 第一个整数*      b: 第二个整数* 返回值:*      a 和 b 的最大公约数* 算法:使用欧几里得算法(辗转相除法)来计算最大公约数* 原理:两个整数 a 和 b(a > b)的最大公约数等于 b 和 a % b 的最大公约数*/
int gcd(int a, int b) {// 当 a 除以 b 的余数不为 0 时,继续循环while (a % b != 0) {// 计算 a 除以 b 的余数,并将其存储在变量 c 中int c = a % b;// 将 b 的值赋给 aa = b;// 将余数 c 的值赋给 bb = c;}// 当循环结束时,b 即为 a 和 b 的最大公约数,将其返回return b;
}int main() {// 定义两个整型变量 a 和 b,用于存储要计算最大公约数的两个数int a, b;// 给变量 a 赋值为 18a = 18;// 给变量 b 赋值为 12b = 12;// 调用 gcd 函数计算 a 和 b 的最大公约数,并将结果输出到控制台cout << gcd(a, b) << endl;// 程序正常结束,返回 0 表示成功return 0;
}
2、更相减损版(辗转相减法)
数学:

更相减损法是一种古老的算法,用于求两个正整数的最大公约数(GCD)。它最早出现在中国古代数学著作《九章算术》中。以下是更相减损法的数学用法和原理

更相减损法的基本原理是:对于任意两个正整数 a 和 b(假设 a≥b),如果 a 和 b 都是偶数,则可以用 2 约简;如果 a 和 b 不都是偶数,则用较大的数减去较小的数,然后继续对所得的差和较小的数进行同样的操作,直到两个数相等为止。这个相等的数就是它们的最大公约数。

如图:

代码:
简约背诵版: 
#include "iostream"
using namespace std;int func(int a, int b){while(a-b!=0){int c = a - b;a = b;b = c;}return a;
}int main(){int a,b;a = 18;b = 12;cout<<func(a,b)<<endl;return 0;
}
解释版:
// 引入标准输入输出流头文件,该头文件提供了像 cin 和 cout 这样的输入输出功能
// 注意:这里使用双引号包含头文件通常用于自定义头文件,标准库头文件一般用尖括号,应改为 #include <iostream>
#include "iostream"// 使用标准命名空间 std,这样在后续代码里就可以直接使用标准库中的类和函数,无需添加 std:: 前缀
using namespace std;/*** 函数名: func* 功能: 计算两个整数的最大公约数(Greatest Common Divisor, GCD)* 参数:*      a: 第一个整数*      b: 第二个整数* 返回值:*      a 和 b 的最大公约数* 算法: 采用更相减损术来计算最大公约数* 原理: 两个正整数 a 和 b(a > b)的最大公约数等于 b 和 a - b 的最大公约数*/
int func(int a, int b) {// 只要 a 与 b 的差值不为 0,就持续循环while (a - b != 0) {// 计算 a 减去 b 的差值,并将结果存储在临时变量 c 中int c = a - b;// 把 b 的值赋给 aa = b;// 把差值 c 的值赋给 bb = c;}// 当 a 与 b 的差值为 0 时,说明此时 a 和 b 相等,这个相等的值就是 a 和 b 的最大公约数,将其返回return a;
}/*** 函数名: main* 功能: 程序的入口函数,程序从这里开始执行* 参数: 无* 返回值:*      整数 0,表示程序正常结束*/
int main() {// 声明两个整型变量 a 和 b,用于存储要计算最大公约数的两个数int a, b;// 给变量 a 赋值为 18a = 18;// 给变量 b 赋值为 12b = 12;// 调用 func 函数计算 a 和 b 的最大公约数,并将结果输出到标准输出流(通常是控制台)// 输出完成后换行cout << func(a, b) << endl;// 返回 0 表示程序正常结束return 0;
}
3、其他方法:

其他方法不像(辗转相除法与更相减损法)那么简便。

所以我在这里,只简单的介绍一下:

1、分解质因数

#include<stdio.h>
void fun(int * arr,int n)
{int i = 2, j = 0;while (n > 1){if (n % i == 0){arr[j++] = i;n /= i;}else {i++;}}
}
int gcd(int a,int b) 
{//因为要进行找这个数的共有的因数,所以这里用数组来接收int arr_a[100] = {0};//放a的所有因数int arr_b[100] = {0};//放b的所有因数//进行放因数fun(arr_a,a);fun(arr_b,b);//找出公共的因数,然后相乘int i = 0, j = 0, ret = 1;while (arr_a[i] != 0 && arr_b[j] != 0) {if (arr_a[i] == arr_b[j]) {ret *= arr_a[i];i++;j++;}else if (arr_a[i] > arr_b[j]){j++;}else{i++;}}return ret;
}
int main() 
{int a = 0;int b = 0;scanf("%d %d",&a,&b);int ret = gcd(a,b);//最大公因数printf("%d和%d的最大公因数是:%d",a,b,ret);return 0;
}
2、穷举法

法如其名,一个一个的输入测试,最后取出来。

//穷举法
#include<stdio.h>
int main() 
{int a = 0;int b = 0;scanf("%d %d",&a,&b);int t = a;while (t--){if (a % t == 0 && b % t == 0)break;}printf("%d",t);return 0;
}
 3、递归法

简单来说,递归法其实就是模拟了辗转相除法。

#include "iostream"
using namespace std;int gcd(int a, int b){if(a%b==0){ // 得到余数return b;}else{ // 余数为0进入递归return gcd(b,a%b); // b放到a的位置,a/b的余数放到b的位置 }
}
int main(){int a,b;a = 18;b = 12;cout<<gcd(a,b)<<endl;return 0;
}

三、练习:

等差数列

题目描述

数学老师给小明出了一道等差数列求和的题目。但是粗心的小明忘记了一 部分的数列,只记得其中 NN 个整数。

现在给出这 NN 个整数,小明想知道包含这 NN 个整数的最短的等差数列有几项?

输入描述

输入的第一行包含一个整数 NN。

第二行包含 NN 个整数 A1,A2,⋅⋅⋅,ANA1​,A2​,⋅⋅⋅,AN​。(注意 A1A1​ ∼ ANAN​ 并不一定是按等差数列中的顺序给出)

其中,2≤N≤105,0≤Ai≤1092≤N≤105,0≤Ai​≤109。

输出描述

输出一个整数表示答案。

输入输出样例

示例

输入

5
2 6 4 10 20

输出

10

样例说明: 包含 2、6、4、10、20 的最短的等差数列是 2、4、6、8、10、12、14、16、 18、20

 这道题目说难不难,说简单不简单

1、很多人不会想到用gcd解题,甚至是直接暴力解题,欸!我一会也试试:(vec[n-1]-vec[0])/n,看来是不行的(n不是所有个数)。但是也能用最小差值作为间隔呀,如:d = min(d,gcd(dif[i],dif[i+1])); 这样好像也行,一会试试

2、当然就是这个啦d = min(d,vec[i+1]-vec[i]); 好多人没考虑min,细节容易出错。

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;// 通过递归
int gcd(int a, int b){if(a%b==0){return b;}else{return gcd(b,a%b);}
}int main()
{int n;cin>>n;vector<int> vec(n);for(int i=0; i<n; ++i){cin>>vec[i];}if(vec.size()==2){ // 特殊情况,只有两个数cout<<2<<endl;return 0;}sort(vec.begin(), vec.end());vector<int> dif(n-1); // 差集数列for(int i=0; i<vec.size()-1; ++i){dif[i] = vec[i+1]-vec[i];}int d = dif[0];if(d==0){  // 有没有一种可能,差值为0。cout<<n<<endl;return 0;}for(int i=0; i<dif.size()-1; ++i){ // 所有差集的最大公约数d = min(d,gcd(dif[i],dif[i+1])); // 为防止结果处,出现更大的差值。}int num = (vec[vec.size()-1]-vec[0])/d; // d 为0的情况,已经被排除if(d==num){cout<<vec.size()<<endl;}else{cout<<num+1<<endl;}return 0;
}

笔者感悟

学习数论的一系列算法时,往往直接看算法,是看不懂的。

需要先摸清数学思想,胸有成竹之时,写对应算法就更轻松、也记得更牢固。

别人算法理解不透的时候,往往是基础扎的不够牢固。


借鉴博客/视频

1、求最大公约数的几种常见的方法 【详解】



文章转载自:

http://DDVm3JLr.Ljkqc.cn
http://Adm5BmKn.Ljkqc.cn
http://J72ukGpC.Ljkqc.cn
http://DcDYX7Mb.Ljkqc.cn
http://cXBk2ps4.Ljkqc.cn
http://FWCOEZaM.Ljkqc.cn
http://RvT1mXaY.Ljkqc.cn
http://T4uHDwWD.Ljkqc.cn
http://ArbnDh4r.Ljkqc.cn
http://YWiuEbgf.Ljkqc.cn
http://3mw9CZbw.Ljkqc.cn
http://SjDaQe3j.Ljkqc.cn
http://BkCMzhO8.Ljkqc.cn
http://Ajf86KnY.Ljkqc.cn
http://3PXqXDev.Ljkqc.cn
http://rPwElMA1.Ljkqc.cn
http://n3I8tik7.Ljkqc.cn
http://1tZ51ERr.Ljkqc.cn
http://RQ1zuWVI.Ljkqc.cn
http://8nvAs1Yi.Ljkqc.cn
http://sYkXRzFf.Ljkqc.cn
http://T3u5GBfZ.Ljkqc.cn
http://bxIKhygI.Ljkqc.cn
http://Tl36GcFq.Ljkqc.cn
http://7ckRR6ke.Ljkqc.cn
http://zC9BPWr8.Ljkqc.cn
http://WXeJvM3W.Ljkqc.cn
http://X9Jjw09l.Ljkqc.cn
http://FleCioun.Ljkqc.cn
http://Ma8TX78g.Ljkqc.cn
http://www.dtcms.com/wzjs/619463.html

相关文章:

  • php网站内容管理系统什么行业最容易做网站
  • 网站维护工程师丰镇市网站丰镇高铁在哪个位置建设
  • 二手车网站建设上海环球金融中心简笔画
  • 和田做网站的联系电话wordpress linux下载文件
  • 网站需求设计文档虚拟空间软件
  • 如何做整人网站昆明网站制作专业
  • asp公司企业网站模板源代码网站的建设原始代码
  • 大连网站代运营的公司有哪些推荐做任务网站
  • 教你做文案的网站推荐wordpress ping optimizer
  • 网站界面设计实验报告服务中心网站建设意见
  • 企业网站设计布局方式wordpress+屏蔽ip插件
  • 专业的网站建设找聚爱长春最新通告今天
  • 厦门建站公司哪家好怎么看到网站开发时间
  • 用阿里云做网站注意事项有什么搜图片的网站好
  • 网站建设技术知乎网站维护建设费应计入科目
  • 网站设计论文选题小型私人会所装修设计
  • 北京宏福建设工程有限公司网站仪征建设局网站
  • 网站开发技术方案与设施上海财务外包公司
  • 微信公众号 做不了微网站南通做微网站
  • 深一互联网站建设怎样混沌鸿蒙网站建设
  • 长春网站建设培训班上海网络公司网站建设
  • 营销网站特点精品毛卡卡1卡2卡3麻豆
  • 如何提升网站alexa排名嘉兴网站排名优化报
  • 宝安网站设计服务建设网站应注意什么
  • 江西省城住房和城乡建设厅网站国企500强名单
  • 深圳建站公司2019做seo网站
  • 网站允许flashwordpress 几天前
  • 建设网站的协议价格低英语翻译
  • 网站开发需要看相关书籍手机网站域名哪里注册
  • 怎么做外贸个人网站官网网站建设需求