当前位置: 首页 > wzjs >正文

江苏建设厅网站电话多少seo查询整站

江苏建设厅网站电话多少,seo查询整站,聚通达网站建设,王野天葛优​本文为为🔗365天深度学习训练营内部文章 原作者:K同学啊​ 先放一张ResNet50模型的鸟类识别结果图 一 ResNetSE-NetBN import matplotlib.pyplot as plt import tensorflow as tf import warnings as w w.filterwarnings(ignore) # 支持中文 plt.rcP…

​本文为为🔗365天深度学习训练营内部文章

原作者:K同学啊​

先放一张ResNet50模型的鸟类识别结果图 

 

一 ResNet+SE-Net+BN 

import matplotlib.pyplot as plt
import tensorflow as tf
import warnings as w
w.filterwarnings('ignore')
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号import os,PIL,pathlib#隐藏警告
import warnings
warnings.filterwarnings('ignore')data_dir = "./bird_photos"
data_dir = pathlib.Path(data_dir)image_count = len(list(data_dir.glob('*/*')))print("图片数为:",image_count)batch_size = 8
img_height = 224
img_width = 224train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="training",seed=123,image_size=(img_height, img_width),batch_size=batch_size)val_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="validation",seed=123,image_size=(img_height, img_width),batch_size=batch_size)class_names = train_ds.class_names
print(class_names)for image_batch, labels_batch in train_ds:print(image_batch.shape)print(labels_batch.shape)breakAUTOTUNE = tf.data.AUTOTUNEdef preprocess_image(image,label):return (image/255.0,label)# 归一化处理
train_ds = train_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
val_ds   = val_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds   = val_ds.cache().prefetch(buffer_size=AUTOTUNE)plt.figure(figsize=(15, 10))  # 图形的宽为15高为10for images, labels in train_ds.take(1):for i in range(8):ax = plt.subplot(2, 4, i + 1) plt.imshow(images[i])plt.title(class_names[labels[i]])plt.axis("off")

 

from keras import layers
from keras.layers import Input, Activation, BatchNormalization, Flatten, Dropout,Reshape
from keras.layers import Dense, Conv2D, MaxPooling2D, ZeroPadding2D, AveragePooling2D, GlobalAveragePooling2D
from keras.models import Model
import tensorflow as tf
from keras.layers import Add, UpSampling2D, Conv2D
from keras.layers import Multiply, Concatenatedef squeeze_excite_block(input_tensor, ratio=16):'''Squeeze-and-Excitation Block:param input_tensor: 输入张量:param ratio: 压缩比,控制激励层中间层的维度。通常选择较小的值,如16。:return: 加权后的张量'''channel_axis = -1  # 通道轴通常在最后一维channels = input_tensor.shape[channel_axis]  # 获取通道数# Squeeze:全局平均池化x = GlobalAveragePooling2D()(input_tensor)x = Reshape((1, 1, channels))(x)# Excite:两个全连接层生成通道权重x = Dense(channels // ratio, activation='relu', kernel_initializer='he_normal', use_bias=False)(x)x = Dense(channels, activation='sigmoid', kernel_initializer='he_normal', use_bias=False)(x)# 将生成的权重与输入张量相乘x = Multiply()([input_tensor, x])return x
def identity_block(input_tensor, kernel_size, filters, stage, block):filters1, filters2, filters3 = filtersname_base = str(stage) + block + '_identity_block_'# 第一卷积层x = Conv2D(filters1, (1, 1), name=name_base + 'conv1')(input_tensor)x = BatchNormalization(name=name_base + 'bn1')(x)x = Activation('relu', name=name_base + 'relu1')(x)# 第二卷积层x = Conv2D(filters2, kernel_size, padding='same', name=name_base + 'conv2')(x)x = BatchNormalization(name=name_base + 'bn2')(x)x = Activation('relu', name=name_base + 'relu2')(x)# 第三卷积层x = Conv2D(filters3, (1, 1), name=name_base + 'conv3')(x)x = BatchNormalization(name=name_base + 'bn3')(x)# SE-Net通道注意力机制x = squeeze_excite_block(x)# 残差连接x = layers.add([x, input_tensor], name=name_base + 'add')x = Activation('relu', name=name_base + 'relu4')(x)return xdef conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2)):filters1, filters2, filters3 = filtersres_name_base = str(stage) + block + '_conv_block_res_'name_base = str(stage) + block + '_conv_block_'# 主卷积层x = Conv2D(filters1, (1, 1), strides=strides, name=name_base + 'conv1')(input_tensor)x = BatchNormalization(name=name_base + 'bn1')(x)x = Activation('relu', name=name_base + 'relu1')(x)x = Conv2D(filters2, kernel_size, padding='same', name=name_base + 'conv2')(x)x = BatchNormalization(name=name_base + 'bn2')(x)x = Activation('relu', name=name_base + 'relu2')(x)x = Conv2D(filters3, (1, 1), name=name_base + 'conv3')(x)x = BatchNormalization(name=name_base + 'bn3')(x)# 残差连接的卷积shortcut = Conv2D(filters3, (1, 1), strides=strides, name=res_name_base + 'conv')(input_tensor)shortcut = BatchNormalization(name=res_name_base + 'bn')(shortcut)# SE-Net通道注意力机制x = squeeze_excite_block(x)# 残差连接加和x = layers.add([x, shortcut], name=name_base + 'add')x = Activation('relu', name=name_base + 'relu4')(x)return x
def ResNet50(input_shape=[224,224,3], classes=4):img_input = Input(shape=input_shape)x = ZeroPadding2D((3, 3))(img_input)x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(x)x = BatchNormalization(name='bn_conv1')(x)x = Activation('relu')(x)x = MaxPooling2D((3, 3), strides=(2, 2))(x)x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')x = AveragePooling2D((7, 7), name='avg_pool')(x)x = Flatten()(x)x = Dropout(0.5)(x)x = Dense(classes, activation='softmax', name='fc2')(x)model = Model(img_input, x, name='resnet50')return modelmodel = ResNet50()
model.summary()

 

Model: "resnet50"
__________________________________________________________________________________________________Layer (type)                   Output Shape         Param #     Connected to                     
==================================================================================================input_1 (InputLayer)           [(None, 224, 224, 3  0           []                               )]                                                                zero_padding2d (ZeroPadding2D)  (None, 230, 230, 3)  0          ['input_1[0][0]']                conv1 (Conv2D)                 (None, 112, 112, 64  9472        ['zero_padding2d[0][0]']         )                                                                 bn_conv1 (BatchNormalization)  (None, 112, 112, 64  256         ['conv1[0][0]']                  )                                                                 activation (Activation)        (None, 112, 112, 64  0           ['bn_conv1[0][0]']               )                                                                 max_pooling2d (MaxPooling2D)   (None, 55, 55, 64)   0           ['activation[0][0]']             2a_conv_block_conv1 (Conv2D)   (None, 55, 55, 64)   4160        ['max_pooling2d[0][0]']          2a_conv_block_bn1 (BatchNormal  (None, 55, 55, 64)  256         ['2a_conv_block_conv1[0][0]']    ization)                                                                                         2a_conv_block_relu1 (Activatio  (None, 55, 55, 64)  0           ['2a_conv_block_bn1[0][0]']      n)                                                                                               2a_conv_block_conv2 (Conv2D)   (None, 55, 55, 64)   36928       ['2a_conv_block_relu1[0][0]']    2a_conv_block_bn2 (BatchNormal  (None, 55, 55, 64)  256         ['2a_conv_block_conv2[0][0]']    ization)                                                                                         2a_conv_block_relu2 (Activatio  (None, 55, 55, 64)  0           ['2a_conv_block_bn2[0][0]']      n)                                                                                               2a_conv_block_conv3 (Conv2D)   (None, 55, 55, 256)  16640       ['2a_conv_block_relu2[0][0]']    2a_conv_block_bn3 (BatchNormal  (None, 55, 55, 256)  1024       ['2a_conv_block_conv3[0][0]']    ization)                                                                                         global_average_pooling2d (Glob  (None, 256)         0           ['2a_conv_block_bn3[0][0]']      alAveragePooling2D)                                                                              reshape (Reshape)              (None, 1, 1, 256)    0           ['global_average_pooling2d[0][0]']                                dense (Dense)                  (None, 1, 1, 16)     4096        ['reshape[0][0]']                dense_1 (Dense)                (None, 1, 1, 256)    4096        ['dense[0][0]']                  2a_conv_block_res_conv (Conv2D  (None, 55, 55, 256)  16640      ['max_pooling2d[0][0]']          )                                                                                                multiply (Multiply)            (None, 55, 55, 256)  0           ['2a_conv_block_bn3[0][0]',      'dense_1[0][0]']                2a_conv_block_res_bn (BatchNor  (None, 55, 55, 256)  1024       ['2a_conv_block_res_conv[0][0]'] malization)                                                                                      2a_conv_block_add (Add)        (None, 55, 55, 256)  0           ['multiply[0][0]',               '2a_conv_block_res_bn[0][0]']   2a_conv_block_relu4 (Activatio  (None, 55, 55, 256)  0          ['2a_conv_block_add[0][0]']      n)                                                                                               2b_identity_block_conv1 (Conv2  (None, 55, 55, 64)  16448       ['2a_conv_block_relu4[0][0]']    D)                                                                                               2b_identity_block_bn1 (BatchNo  (None, 55, 55, 64)  256         ['2b_identity_block_conv1[0][0]']rmalization)                                                                                     2b_identity_block_relu1 (Activ  (None, 55, 55, 64)  0           ['2b_identity_block_bn1[0][0]']  ation)                                                                                           2b_identity_block_conv2 (Conv2  (None, 55, 55, 64)  36928       ['2b_identity_block_relu1[0][0]']D)                                                                                               2b_identity_block_bn2 (BatchNo  (None, 55, 55, 64)  256         ['2b_identity_block_conv2[0][0]']rmalization)                                                                                     2b_identity_block_relu2 (Activ  (None, 55, 55, 64)  0           ['2b_identity_block_bn2[0][0]']  ation)                                                                                           2b_identity_block_conv3 (Conv2  (None, 55, 55, 256)  16640      ['2b_identity_block_relu2[0][0]']D)                                                                                               2b_identity_block_bn3 (BatchNo  (None, 55, 55, 256)  1024       ['2b_identity_block_conv3[0][0]']rmalization)                                                                                     global_average_pooling2d_1 (Gl  (None, 256)         0           ['2b_identity_block_bn3[0][0]']  obalAveragePooling2D)                                                                            reshape_1 (Reshape)            (None, 1, 1, 256)    0           ['global_average_pooling2d_1[0][0]']                              dense_2 (Dense)                (None, 1, 1, 16)     4096        ['reshape_1[0][0]']              dense_3 (Dense)                (None, 1, 1, 256)    4096        ['dense_2[0][0]']                multiply_1 (Multiply)          (None, 55, 55, 256)  0           ['2b_identity_block_bn3[0][0]',  'dense_3[0][0]']                2b_identity_block_add (Add)    (None, 55, 55, 256)  0           ['multiply_1[0][0]',             '2a_conv_block_relu4[0][0]']    2b_identity_block_relu4 (Activ  (None, 55, 55, 256)  0          ['2b_identity_block_add[0][0]']  ation)                                                                                           2c_identity_block_conv1 (Conv2  (None, 55, 55, 64)  16448       ['2b_identity_block_relu4[0][0]']D)                                                                                               2c_identity_block_bn1 (BatchNo  (None, 55, 55, 64)  256         ['2c_identity_block_conv1[0][0]']rmalization)                                                                                     2c_identity_block_relu1 (Activ  (None, 55, 55, 64)  0           ['2c_identity_block_bn1[0][0]']  ation)                                                                                           2c_identity_block_conv2 (Conv2  (None, 55, 55, 64)  36928       ['2c_identity_block_relu1[0][0]']D)                                                                                               2c_identity_block_bn2 (BatchNo  (None, 55, 55, 64)  256         ['2c_identity_block_conv2[0][0]']rmalization)                                                                                     2c_identity_block_relu2 (Activ  (None, 55, 55, 64)  0           ['2c_identity_block_bn2[0][0]']  ation)                                                                                           2c_identity_block_conv3 (Conv2  (None, 55, 55, 256)  16640      ['2c_identity_block_relu2[0][0]']D)                                                                                               2c_identity_block_bn3 (BatchNo  (None, 55, 55, 256)  1024       ['2c_identity_block_conv3[0][0]']rmalization)                                                                                     global_average_pooling2d_2 (Gl  (None, 256)         0           ['2c_identity_block_bn3[0][0]']  obalAveragePooling2D)                                                                            reshape_2 (Reshape)            (None, 1, 1, 256)    0           ['global_average_pooling2d_2[0][0]']                              dense_4 (Dense)                (None, 1, 1, 16)     4096        ['reshape_2[0][0]']              dense_5 (Dense)                (None, 1, 1, 256)    4096        ['dense_4[0][0]']                multiply_2 (Multiply)          (None, 55, 55, 256)  0           ['2c_identity_block_bn3[0][0]',  'dense_5[0][0]']                2c_identity_block_add (Add)    (None, 55, 55, 256)  0           ['multiply_2[0][0]',             '2b_identity_block_relu4[0][0]']2c_identity_block_relu4 (Activ  (None, 55, 55, 256)  0          ['2c_identity_block_add[0][0]']  ation)                                                                                           3a_conv_block_conv1 (Conv2D)   (None, 28, 28, 128)  32896       ['2c_identity_block_relu4[0][0]']3a_conv_block_bn1 (BatchNormal  (None, 28, 28, 128)  512        ['3a_conv_block_conv1[0][0]']    ization)                                                                                         3a_conv_block_relu1 (Activatio  (None, 28, 28, 128)  0          ['3a_conv_block_bn1[0][0]']      n)                                                                                               3a_conv_block_conv2 (Conv2D)   (None, 28, 28, 128)  147584      ['3a_conv_block_relu1[0][0]']    3a_conv_block_bn2 (BatchNormal  (None, 28, 28, 128)  512        ['3a_conv_block_conv2[0][0]']    ization)                                                                                         3a_conv_block_relu2 (Activatio  (None, 28, 28, 128)  0          ['3a_conv_block_bn2[0][0]']      n)                                                                                               3a_conv_block_conv3 (Conv2D)   (None, 28, 28, 512)  66048       ['3a_conv_block_relu2[0][0]']    3a_conv_block_bn3 (BatchNormal  (None, 28, 28, 512)  2048       ['3a_conv_block_conv3[0][0]']    ization)                                                                                         global_average_pooling2d_3 (Gl  (None, 512)         0           ['3a_conv_block_bn3[0][0]']      obalAveragePooling2D)                                                                            reshape_3 (Reshape)            (None, 1, 1, 512)    0           ['global_average_pooling2d_3[0][0]']                              dense_6 (Dense)                (None, 1, 1, 32)     16384       ['reshape_3[0][0]']              dense_7 (Dense)                (None, 1, 1, 512)    16384       ['dense_6[0][0]']                3a_conv_block_res_conv (Conv2D  (None, 28, 28, 512)  131584     ['2c_identity_block_relu4[0][0]'])                                                                                                multiply_3 (Multiply)          (None, 28, 28, 512)  0           ['3a_conv_block_bn3[0][0]',      'dense_7[0][0]']                3a_conv_block_res_bn (BatchNor  (None, 28, 28, 512)  2048       ['3a_conv_block_res_conv[0][0]'] malization)                                                                                      3a_conv_block_add (Add)        (None, 28, 28, 512)  0           ['multiply_3[0][0]',             '3a_conv_block_res_bn[0][0]']   3a_conv_block_relu4 (Activatio  (None, 28, 28, 512)  0          ['3a_conv_block_add[0][0]']      n)                                                                                               3b_identity_block_conv1 (Conv2  (None, 28, 28, 128)  65664      ['3a_conv_block_relu4[0][0]']    D)                                                                                               3b_identity_block_bn1 (BatchNo  (None, 28, 28, 128)  512        ['3b_identity_block_conv1[0][0]']rmalization)                                                                                     3b_identity_block_relu1 (Activ  (None, 28, 28, 128)  0          ['3b_identity_block_bn1[0][0]']  ation)                                                                                           3b_identity_block_conv2 (Conv2  (None, 28, 28, 128)  147584     ['3b_identity_block_relu1[0][0]']D)                                                                                               3b_identity_block_bn2 (BatchNo  (None, 28, 28, 128)  512        ['3b_identity_block_conv2[0][0]']rmalization)                                                                                     3b_identity_block_relu2 (Activ  (None, 28, 28, 128)  0          ['3b_identity_block_bn2[0][0]']  ation)                                                                                           3b_identity_block_conv3 (Conv2  (None, 28, 28, 512)  66048      ['3b_identity_block_relu2[0][0]']D)                                                                                               3b_identity_block_bn3 (BatchNo  (None, 28, 28, 512)  2048       ['3b_identity_block_conv3[0][0]']rmalization)                                                                                     global_average_pooling2d_4 (Gl  (None, 512)         0           ['3b_identity_block_bn3[0][0]']  obalAveragePooling2D)                                                                            reshape_4 (Reshape)            (None, 1, 1, 512)    0           ['global_average_pooling2d_4[0][0]']                              dense_8 (Dense)                (None, 1, 1, 32)     16384       ['reshape_4[0][0]']              dense_9 (Dense)                (None, 1, 1, 512)    16384       ['dense_8[0][0]']                multiply_4 (Multiply)          (None, 28, 28, 512)  0           ['3b_identity_block_bn3[0][0]',  'dense_9[0][0]']                3b_identity_block_add (Add)    (None, 28, 28, 512)  0           ['multiply_4[0][0]',             '3a_conv_block_relu4[0][0]']    3b_identity_block_relu4 (Activ  (None, 28, 28, 512)  0          ['3b_identity_block_add[0][0]']  ation)                                                                                           3c_identity_block_conv1 (Conv2  (None, 28, 28, 128)  65664      ['3b_identity_block_relu4[0][0]']D)                                                                                               3c_identity_block_bn1 (BatchNo  (None, 28, 28, 128)  512        ['3c_identity_block_conv1[0][0]']rmalization)                                                                                     3c_identity_block_relu1 (Activ  (None, 28, 28, 128)  0          ['3c_identity_block_bn1[0][0]']  ation)                                                                                           3c_identity_block_conv2 (Conv2  (None, 28, 28, 128)  147584     ['3c_identity_block_relu1[0][0]']D)                                                                                               3c_identity_block_bn2 (BatchNo  (None, 28, 28, 128)  512        ['3c_identity_block_conv2[0][0]']rmalization)                                                                                     3c_identity_block_relu2 (Activ  (None, 28, 28, 128)  0          ['3c_identity_block_bn2[0][0]']  ation)                                                                                           3c_identity_block_conv3 (Conv2  (None, 28, 28, 512)  66048      ['3c_identity_block_relu2[0][0]']D)                                                                                               3c_identity_block_bn3 (BatchNo  (None, 28, 28, 512)  2048       ['3c_identity_block_conv3[0][0]']rmalization)                                                                                     global_average_pooling2d_5 (Gl  (None, 512)         0           ['3c_identity_block_bn3[0][0]']  obalAveragePooling2D)                                                                            reshape_5 (Reshape)            (None, 1, 1, 512)    0           ['global_average_pooling2d_5[0][0]']                              dense_10 (Dense)               (None, 1, 1, 32)     16384       ['reshape_5[0][0]']              dense_11 (Dense)               (None, 1, 1, 512)    16384       ['dense_10[0][0]']               multiply_5 (Multiply)          (None, 28, 28, 512)  0           ['3c_identity_block_bn3[0][0]',  'dense_11[0][0]']               3c_identity_block_add (Add)    (None, 28, 28, 512)  0           ['multiply_5[0][0]',             '3b_identity_block_relu4[0][0]']3c_identity_block_relu4 (Activ  (None, 28, 28, 512)  0          ['3c_identity_block_add[0][0]']  ation)                                                                                           3d_identity_block_conv1 (Conv2  (None, 28, 28, 128)  65664      ['3c_identity_block_relu4[0][0]']D)                                                                                               3d_identity_block_bn1 (BatchNo  (None, 28, 28, 128)  512        ['3d_identity_block_conv1[0][0]']rmalization)                                                                                     3d_identity_block_relu1 (Activ  (None, 28, 28, 128)  0          ['3d_identity_block_bn1[0][0]']  ation)                                                                                           3d_identity_block_conv2 (Conv2  (None, 28, 28, 128)  147584     ['3d_identity_block_relu1[0][0]']D)                                                                                               3d_identity_block_bn2 (BatchNo  (None, 28, 28, 128)  512        ['3d_identity_block_conv2[0][0]']rmalization)                                                                                     3d_identity_block_relu2 (Activ  (None, 28, 28, 128)  0          ['3d_identity_block_bn2[0][0]']  ation)                                                                                           3d_identity_block_conv3 (Conv2  (None, 28, 28, 512)  66048      ['3d_identity_block_relu2[0][0]']D)                                                                                               3d_identity_block_bn3 (BatchNo  (None, 28, 28, 512)  2048       ['3d_identity_block_conv3[0][0]']rmalization)                                                                                     global_average_pooling2d_6 (Gl  (None, 512)         0           ['3d_identity_block_bn3[0][0]']  obalAveragePooling2D)                                                                            reshape_6 (Reshape)            (None, 1, 1, 512)    0           ['global_average_pooling2d_6[0][0]']                              dense_12 (Dense)               (None, 1, 1, 32)     16384       ['reshape_6[0][0]']              dense_13 (Dense)               (None, 1, 1, 512)    16384       ['dense_12[0][0]']               multiply_6 (Multiply)          (None, 28, 28, 512)  0           ['3d_identity_block_bn3[0][0]',  'dense_13[0][0]']               3d_identity_block_add (Add)    (None, 28, 28, 512)  0           ['multiply_6[0][0]',             '3c_identity_block_relu4[0][0]']3d_identity_block_relu4 (Activ  (None, 28, 28, 512)  0          ['3d_identity_block_add[0][0]']  ation)                                                                                           4a_conv_block_conv1 (Conv2D)   (None, 14, 14, 256)  131328      ['3d_identity_block_relu4[0][0]']4a_conv_block_bn1 (BatchNormal  (None, 14, 14, 256)  1024       ['4a_conv_block_conv1[0][0]']    ization)                                                                                         4a_conv_block_relu1 (Activatio  (None, 14, 14, 256)  0          ['4a_conv_block_bn1[0][0]']      n)                                                                                               4a_conv_block_conv2 (Conv2D)   (None, 14, 14, 256)  590080      ['4a_conv_block_relu1[0][0]']    4a_conv_block_bn2 (BatchNormal  (None, 14, 14, 256)  1024       ['4a_conv_block_conv2[0][0]']    ization)                                                                                         4a_conv_block_relu2 (Activatio  (None, 14, 14, 256)  0          ['4a_conv_block_bn2[0][0]']      n)                                                                                               4a_conv_block_conv3 (Conv2D)   (None, 14, 14, 1024  263168      ['4a_conv_block_relu2[0][0]']    )                                                                 4a_conv_block_bn3 (BatchNormal  (None, 14, 14, 1024  4096       ['4a_conv_block_conv3[0][0]']    ization)                       )                                                                 global_average_pooling2d_7 (Gl  (None, 1024)        0           ['4a_conv_block_bn3[0][0]']      obalAveragePooling2D)                                                                            reshape_7 (Reshape)            (None, 1, 1, 1024)   0           ['global_average_pooling2d_7[0][0]']                              dense_14 (Dense)               (None, 1, 1, 64)     65536       ['reshape_7[0][0]']              dense_15 (Dense)               (None, 1, 1, 1024)   65536       ['dense_14[0][0]']               4a_conv_block_res_conv (Conv2D  (None, 14, 14, 1024  525312     ['3d_identity_block_relu4[0][0]'])                              )                                                                 multiply_7 (Multiply)          (None, 14, 14, 1024  0           ['4a_conv_block_bn3[0][0]',      )                                 'dense_15[0][0]']               4a_conv_block_res_bn (BatchNor  (None, 14, 14, 1024  4096       ['4a_conv_block_res_conv[0][0]'] malization)                    )                                                                 4a_conv_block_add (Add)        (None, 14, 14, 1024  0           ['multiply_7[0][0]',             )                                 '4a_conv_block_res_bn[0][0]']   4a_conv_block_relu4 (Activatio  (None, 14, 14, 1024  0          ['4a_conv_block_add[0][0]']      n)                             )                                                                 4b_identity_block_conv1 (Conv2  (None, 14, 14, 256)  262400     ['4a_conv_block_relu4[0][0]']    D)                                                                                               4b_identity_block_bn1 (BatchNo  (None, 14, 14, 256)  1024       ['4b_identity_block_conv1[0][0]']rmalization)                                                                                     4b_identity_block_relu1 (Activ  (None, 14, 14, 256)  0          ['4b_identity_block_bn1[0][0]']  ation)                                                                                           4b_identity_block_conv2 (Conv2  (None, 14, 14, 256)  590080     ['4b_identity_block_relu1[0][0]']D)                                                                                               4b_identity_block_bn2 (BatchNo  (None, 14, 14, 256)  1024       ['4b_identity_block_conv2[0][0]']rmalization)                                                                                     4b_identity_block_relu2 (Activ  (None, 14, 14, 256)  0          ['4b_identity_block_bn2[0][0]']  ation)                                                                                           4b_identity_block_conv3 (Conv2  (None, 14, 14, 1024  263168     ['4b_identity_block_relu2[0][0]']D)                             )                                                                 4b_identity_block_bn3 (BatchNo  (None, 14, 14, 1024  4096       ['4b_identity_block_conv3[0][0]']rmalization)                   )                                                                 global_average_pooling2d_8 (Gl  (None, 1024)        0           ['4b_identity_block_bn3[0][0]']  obalAveragePooling2D)                                                                            reshape_8 (Reshape)            (None, 1, 1, 1024)   0           ['global_average_pooling2d_8[0][0]']                              dense_16 (Dense)               (None, 1, 1, 64)     65536       ['reshape_8[0][0]']              dense_17 (Dense)               (None, 1, 1, 1024)   65536       ['dense_16[0][0]']               multiply_8 (Multiply)          (None, 14, 14, 1024  0           ['4b_identity_block_bn3[0][0]',  )                                 'dense_17[0][0]']               4b_identity_block_add (Add)    (None, 14, 14, 1024  0           ['multiply_8[0][0]',             )                                 '4a_conv_block_relu4[0][0]']    4b_identity_block_relu4 (Activ  (None, 14, 14, 1024  0          ['4b_identity_block_add[0][0]']  ation)                         )                                                                 4c_identity_block_conv1 (Conv2  (None, 14, 14, 256)  262400     ['4b_identity_block_relu4[0][0]']D)                                                                                               4c_identity_block_bn1 (BatchNo  (None, 14, 14, 256)  1024       ['4c_identity_block_conv1[0][0]']rmalization)                                                                                     4c_identity_block_relu1 (Activ  (None, 14, 14, 256)  0          ['4c_identity_block_bn1[0][0]']  ation)                                                                                           4c_identity_block_conv2 (Conv2  (None, 14, 14, 256)  590080     ['4c_identity_block_relu1[0][0]']D)                                                                                               4c_identity_block_bn2 (BatchNo  (None, 14, 14, 256)  1024       ['4c_identity_block_conv2[0][0]']rmalization)                                                                                     4c_identity_block_relu2 (Activ  (None, 14, 14, 256)  0          ['4c_identity_block_bn2[0][0]']  ation)                                                                                           4c_identity_block_conv3 (Conv2  (None, 14, 14, 1024  263168     ['4c_identity_block_relu2[0][0]']D)                             )                                                                 4c_identity_block_bn3 (BatchNo  (None, 14, 14, 1024  4096       ['4c_identity_block_conv3[0][0]']rmalization)                   )                                                                 global_average_pooling2d_9 (Gl  (None, 1024)        0           ['4c_identity_block_bn3[0][0]']  obalAveragePooling2D)                                                                            reshape_9 (Reshape)            (None, 1, 1, 1024)   0           ['global_average_pooling2d_9[0][0]']                              dense_18 (Dense)               (None, 1, 1, 64)     65536       ['reshape_9[0][0]']              dense_19 (Dense)               (None, 1, 1, 1024)   65536       ['dense_18[0][0]']               multiply_9 (Multiply)          (None, 14, 14, 1024  0           ['4c_identity_block_bn3[0][0]',  )                                 'dense_19[0][0]']               4c_identity_block_add (Add)    (None, 14, 14, 1024  0           ['multiply_9[0][0]',             )                                 '4b_identity_block_relu4[0][0]']4c_identity_block_relu4 (Activ  (None, 14, 14, 1024  0          ['4c_identity_block_add[0][0]']  ation)                         )                                                                 4d_identity_block_conv1 (Conv2  (None, 14, 14, 256)  262400     ['4c_identity_block_relu4[0][0]']D)                                                                                               4d_identity_block_bn1 (BatchNo  (None, 14, 14, 256)  1024       ['4d_identity_block_conv1[0][0]']rmalization)                                                                                     4d_identity_block_relu1 (Activ  (None, 14, 14, 256)  0          ['4d_identity_block_bn1[0][0]']  ation)                                                                                           4d_identity_block_conv2 (Conv2  (None, 14, 14, 256)  590080     ['4d_identity_block_relu1[0][0]']D)                                                                                               4d_identity_block_bn2 (BatchNo  (None, 14, 14, 256)  1024       ['4d_identity_block_conv2[0][0]']rmalization)                                                                                     4d_identity_block_relu2 (Activ  (None, 14, 14, 256)  0          ['4d_identity_block_bn2[0][0]']  ation)                                                                                           4d_identity_block_conv3 (Conv2  (None, 14, 14, 1024  263168     ['4d_identity_block_relu2[0][0]']D)                             )                                                                 4d_identity_block_bn3 (BatchNo  (None, 14, 14, 1024  4096       ['4d_identity_block_conv3[0][0]']rmalization)                   )                                                                 global_average_pooling2d_10 (G  (None, 1024)        0           ['4d_identity_block_bn3[0][0]']  lobalAveragePooling2D)                                                                           reshape_10 (Reshape)           (None, 1, 1, 1024)   0           ['global_average_pooling2d_10[0][0]']                             dense_20 (Dense)               (None, 1, 1, 64)     65536       ['reshape_10[0][0]']             dense_21 (Dense)               (None, 1, 1, 1024)   65536       ['dense_20[0][0]']               multiply_10 (Multiply)         (None, 14, 14, 1024  0           ['4d_identity_block_bn3[0][0]',  )                                 'dense_21[0][0]']               4d_identity_block_add (Add)    (None, 14, 14, 1024  0           ['multiply_10[0][0]',            )                                 '4c_identity_block_relu4[0][0]']4d_identity_block_relu4 (Activ  (None, 14, 14, 1024  0          ['4d_identity_block_add[0][0]']  ation)                         )                                                                 4e_identity_block_conv1 (Conv2  (None, 14, 14, 256)  262400     ['4d_identity_block_relu4[0][0]']D)                                                                                               4e_identity_block_bn1 (BatchNo  (None, 14, 14, 256)  1024       ['4e_identity_block_conv1[0][0]']rmalization)                                                                                     4e_identity_block_relu1 (Activ  (None, 14, 14, 256)  0          ['4e_identity_block_bn1[0][0]']  ation)                                                                                           4e_identity_block_conv2 (Conv2  (None, 14, 14, 256)  590080     ['4e_identity_block_relu1[0][0]']D)                                                                                               4e_identity_block_bn2 (BatchNo  (None, 14, 14, 256)  1024       ['4e_identity_block_conv2[0][0]']rmalization)                                                                                     4e_identity_block_relu2 (Activ  (None, 14, 14, 256)  0          ['4e_identity_block_bn2[0][0]']  ation)                                                                                           4e_identity_block_conv3 (Conv2  (None, 14, 14, 1024  263168     ['4e_identity_block_relu2[0][0]']D)                             )                                                                 4e_identity_block_bn3 (BatchNo  (None, 14, 14, 1024  4096       ['4e_identity_block_conv3[0][0]']rmalization)                   )                                                                 global_average_pooling2d_11 (G  (None, 1024)        0           ['4e_identity_block_bn3[0][0]']  lobalAveragePooling2D)                                                                           reshape_11 (Reshape)           (None, 1, 1, 1024)   0           ['global_average_pooling2d_11[0][0]']                             dense_22 (Dense)               (None, 1, 1, 64)     65536       ['reshape_11[0][0]']             dense_23 (Dense)               (None, 1, 1, 1024)   65536       ['dense_22[0][0]']               multiply_11 (Multiply)         (None, 14, 14, 1024  0           ['4e_identity_block_bn3[0][0]',  )                                 'dense_23[0][0]']               4e_identity_block_add (Add)    (None, 14, 14, 1024  0           ['multiply_11[0][0]',            )                                 '4d_identity_block_relu4[0][0]']4e_identity_block_relu4 (Activ  (None, 14, 14, 1024  0          ['4e_identity_block_add[0][0]']  ation)                         )                                                                 4f_identity_block_conv1 (Conv2  (None, 14, 14, 256)  262400     ['4e_identity_block_relu4[0][0]']D)                                                                                               4f_identity_block_bn1 (BatchNo  (None, 14, 14, 256)  1024       ['4f_identity_block_conv1[0][0]']rmalization)                                                                                     4f_identity_block_relu1 (Activ  (None, 14, 14, 256)  0          ['4f_identity_block_bn1[0][0]']  ation)                                                                                           4f_identity_block_conv2 (Conv2  (None, 14, 14, 256)  590080     ['4f_identity_block_relu1[0][0]']D)                                                                                               4f_identity_block_bn2 (BatchNo  (None, 14, 14, 256)  1024       ['4f_identity_block_conv2[0][0]']rmalization)                                                                                     4f_identity_block_relu2 (Activ  (None, 14, 14, 256)  0          ['4f_identity_block_bn2[0][0]']  ation)                                                                                           4f_identity_block_conv3 (Conv2  (None, 14, 14, 1024  263168     ['4f_identity_block_relu2[0][0]']D)                             )                                                                 4f_identity_block_bn3 (BatchNo  (None, 14, 14, 1024  4096       ['4f_identity_block_conv3[0][0]']rmalization)                   )                                                                 global_average_pooling2d_12 (G  (None, 1024)        0           ['4f_identity_block_bn3[0][0]']  lobalAveragePooling2D)                                                                           reshape_12 (Reshape)           (None, 1, 1, 1024)   0           ['global_average_pooling2d_12[0][0]']                             dense_24 (Dense)               (None, 1, 1, 64)     65536       ['reshape_12[0][0]']             dense_25 (Dense)               (None, 1, 1, 1024)   65536       ['dense_24[0][0]']               multiply_12 (Multiply)         (None, 14, 14, 1024  0           ['4f_identity_block_bn3[0][0]',  )                                 'dense_25[0][0]']               4f_identity_block_add (Add)    (None, 14, 14, 1024  0           ['multiply_12[0][0]',            )                                 '4e_identity_block_relu4[0][0]']4f_identity_block_relu4 (Activ  (None, 14, 14, 1024  0          ['4f_identity_block_add[0][0]']  ation)                         )                                                                 5a_conv_block_conv1 (Conv2D)   (None, 7, 7, 512)    524800      ['4f_identity_block_relu4[0][0]']5a_conv_block_bn1 (BatchNormal  (None, 7, 7, 512)   2048        ['5a_conv_block_conv1[0][0]']    ization)                                                                                         5a_conv_block_relu1 (Activatio  (None, 7, 7, 512)   0           ['5a_conv_block_bn1[0][0]']      n)                                                                                               5a_conv_block_conv2 (Conv2D)   (None, 7, 7, 512)    2359808     ['5a_conv_block_relu1[0][0]']    5a_conv_block_bn2 (BatchNormal  (None, 7, 7, 512)   2048        ['5a_conv_block_conv2[0][0]']    ization)                                                                                         5a_conv_block_relu2 (Activatio  (None, 7, 7, 512)   0           ['5a_conv_block_bn2[0][0]']      n)                                                                                               5a_conv_block_conv3 (Conv2D)   (None, 7, 7, 2048)   1050624     ['5a_conv_block_relu2[0][0]']    5a_conv_block_bn3 (BatchNormal  (None, 7, 7, 2048)  8192        ['5a_conv_block_conv3[0][0]']    ization)                                                                                         global_average_pooling2d_13 (G  (None, 2048)        0           ['5a_conv_block_bn3[0][0]']      lobalAveragePooling2D)                                                                           reshape_13 (Reshape)           (None, 1, 1, 2048)   0           ['global_average_pooling2d_13[0][0]']                             dense_26 (Dense)               (None, 1, 1, 128)    262144      ['reshape_13[0][0]']             dense_27 (Dense)               (None, 1, 1, 2048)   262144      ['dense_26[0][0]']               5a_conv_block_res_conv (Conv2D  (None, 7, 7, 2048)  2099200     ['4f_identity_block_relu4[0][0]'])                                                                                                multiply_13 (Multiply)         (None, 7, 7, 2048)   0           ['5a_conv_block_bn3[0][0]',      'dense_27[0][0]']               5a_conv_block_res_bn (BatchNor  (None, 7, 7, 2048)  8192        ['5a_conv_block_res_conv[0][0]'] malization)                                                                                      5a_conv_block_add (Add)        (None, 7, 7, 2048)   0           ['multiply_13[0][0]',            '5a_conv_block_res_bn[0][0]']   5a_conv_block_relu4 (Activatio  (None, 7, 7, 2048)  0           ['5a_conv_block_add[0][0]']      n)                                                                                               5b_identity_block_conv1 (Conv2  (None, 7, 7, 512)   1049088     ['5a_conv_block_relu4[0][0]']    D)                                                                                               5b_identity_block_bn1 (BatchNo  (None, 7, 7, 512)   2048        ['5b_identity_block_conv1[0][0]']rmalization)                                                                                     5b_identity_block_relu1 (Activ  (None, 7, 7, 512)   0           ['5b_identity_block_bn1[0][0]']  ation)                                                                                           5b_identity_block_conv2 (Conv2  (None, 7, 7, 512)   2359808     ['5b_identity_block_relu1[0][0]']D)                                                                                               5b_identity_block_bn2 (BatchNo  (None, 7, 7, 512)   2048        ['5b_identity_block_conv2[0][0]']rmalization)                                                                                     5b_identity_block_relu2 (Activ  (None, 7, 7, 512)   0           ['5b_identity_block_bn2[0][0]']  ation)                                                                                           5b_identity_block_conv3 (Conv2  (None, 7, 7, 2048)  1050624     ['5b_identity_block_relu2[0][0]']D)                                                                                               5b_identity_block_bn3 (BatchNo  (None, 7, 7, 2048)  8192        ['5b_identity_block_conv3[0][0]']rmalization)                                                                                     global_average_pooling2d_14 (G  (None, 2048)        0           ['5b_identity_block_bn3[0][0]']  lobalAveragePooling2D)                                                                           reshape_14 (Reshape)           (None, 1, 1, 2048)   0           ['global_average_pooling2d_14[0][0]']                             dense_28 (Dense)               (None, 1, 1, 128)    262144      ['reshape_14[0][0]']             dense_29 (Dense)               (None, 1, 1, 2048)   262144      ['dense_28[0][0]']               multiply_14 (Multiply)         (None, 7, 7, 2048)   0           ['5b_identity_block_bn3[0][0]',  'dense_29[0][0]']               5b_identity_block_add (Add)    (None, 7, 7, 2048)   0           ['multiply_14[0][0]',            '5a_conv_block_relu4[0][0]']    5b_identity_block_relu4 (Activ  (None, 7, 7, 2048)  0           ['5b_identity_block_add[0][0]']  ation)                                                                                           5c_identity_block_conv1 (Conv2  (None, 7, 7, 512)   1049088     ['5b_identity_block_relu4[0][0]']D)                                                                                               5c_identity_block_bn1 (BatchNo  (None, 7, 7, 512)   2048        ['5c_identity_block_conv1[0][0]']rmalization)                                                                                     5c_identity_block_relu1 (Activ  (None, 7, 7, 512)   0           ['5c_identity_block_bn1[0][0]']  ation)                                                                                           5c_identity_block_conv2 (Conv2  (None, 7, 7, 512)   2359808     ['5c_identity_block_relu1[0][0]']D)                                                                                               5c_identity_block_bn2 (BatchNo  (None, 7, 7, 512)   2048        ['5c_identity_block_conv2[0][0]']rmalization)                                                                                     5c_identity_block_relu2 (Activ  (None, 7, 7, 512)   0           ['5c_identity_block_bn2[0][0]']  ation)                                                                                           5c_identity_block_conv3 (Conv2  (None, 7, 7, 2048)  1050624     ['5c_identity_block_relu2[0][0]']D)                                                                                               5c_identity_block_bn3 (BatchNo  (None, 7, 7, 2048)  8192        ['5c_identity_block_conv3[0][0]']rmalization)                                                                                     global_average_pooling2d_15 (G  (None, 2048)        0           ['5c_identity_block_bn3[0][0]']  lobalAveragePooling2D)                                                                           reshape_15 (Reshape)           (None, 1, 1, 2048)   0           ['global_average_pooling2d_15[0][0]']                             dense_30 (Dense)               (None, 1, 1, 128)    262144      ['reshape_15[0][0]']             dense_31 (Dense)               (None, 1, 1, 2048)   262144      ['dense_30[0][0]']               multiply_15 (Multiply)         (None, 7, 7, 2048)   0           ['5c_identity_block_bn3[0][0]',  'dense_31[0][0]']               5c_identity_block_add (Add)    (None, 7, 7, 2048)   0           ['multiply_15[0][0]',            '5b_identity_block_relu4[0][0]']5c_identity_block_relu4 (Activ  (None, 7, 7, 2048)  0           ['5c_identity_block_add[0][0]']  ation)                                                                                           avg_pool (AveragePooling2D)    (None, 1, 1, 2048)   0           ['5c_identity_block_relu4[0][0]']flatten (Flatten)              (None, 2048)         0           ['avg_pool[0][0]']               dropout (Dropout)              (None, 2048)         0           ['flatten[0][0]']                fc2 (Dense)                    (None, 4)            8196        ['dropout[0][0]']                ==================================================================================================
Total params: 26,110,852
Trainable params: 26,057,732
Non-trainable params: 53,120
__________________________________________________________________________________________________
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])epochs = 30history = model.fit(train_ds,validation_data=val_ds,epochs=epochs,
)

 

Epoch 1/30
57/57 [==============================] - 120s 2s/step - loss: 1.6071 - accuracy: 0.5022 - val_loss: 1.6805 - val_accuracy: 0.3628
Epoch 2/30
57/57 [==============================] - 101s 2s/step - loss: 1.1572 - accuracy: 0.5973 - val_loss: 2.9043 - val_accuracy: 0.3628
Epoch 3/30
57/57 [==============================] - 103s 2s/step - loss: 1.0106 - accuracy: 0.6438 - val_loss: 3.5882 - val_accuracy: 0.2655
Epoch 4/30
57/57 [==============================] - 104s 2s/step - loss: 0.6960 - accuracy: 0.7345 - val_loss: 3.8824 - val_accuracy: 0.2920
Epoch 5/30
57/57 [==============================] - 103s 2s/step - loss: 0.6722 - accuracy: 0.8009 - val_loss: 1.9140 - val_accuracy: 0.3805
Epoch 6/30
57/57 [==============================] - 102s 2s/step - loss: 0.5720 - accuracy: 0.8009 - val_loss: 1.3526 - val_accuracy: 0.5133
Epoch 7/30
57/57 [==============================] - 103s 2s/step - loss: 0.5234 - accuracy: 0.8252 - val_loss: 1.6950 - val_accuracy: 0.6195
Epoch 8/30
57/57 [==============================] - 103s 2s/step - loss: 0.5409 - accuracy: 0.8186 - val_loss: 1.0905 - val_accuracy: 0.5752
Epoch 9/30
57/57 [==============================] - 102s 2s/step - loss: 0.4960 - accuracy: 0.8230 - val_loss: 1.0269 - val_accuracy: 0.5664
Epoch 10/30
57/57 [==============================] - 106s 2s/step - loss: 0.3521 - accuracy: 0.8761 - val_loss: 0.7942 - val_accuracy: 0.7965
Epoch 11/30
57/57 [==============================] - 103s 2s/step - loss: 0.2162 - accuracy: 0.9204 - val_loss: 0.9084 - val_accuracy: 0.7168
Epoch 12/30
57/57 [==============================] - 103s 2s/step - loss: 0.3159 - accuracy: 0.9093 - val_loss: 1.8489 - val_accuracy: 0.7611
Epoch 13/30
57/57 [==============================] - 102s 2s/step - loss: 0.2727 - accuracy: 0.8960 - val_loss: 2.2825 - val_accuracy: 0.7345
Epoch 14/30
57/57 [==============================] - 104s 2s/step - loss: 0.1902 - accuracy: 0.9381 - val_loss: 1.1050 - val_accuracy: 0.7257
Epoch 15/30
57/57 [==============================] - 105s 2s/step - loss: 0.2085 - accuracy: 0.9292 - val_loss: 0.3290 - val_accuracy: 0.9027
Epoch 16/30
57/57 [==============================] - 105s 2s/step - loss: 0.1697 - accuracy: 0.9358 - val_loss: 1.0470 - val_accuracy: 0.7965
Epoch 17/30
57/57 [==============================] - 106s 2s/step - loss: 0.1955 - accuracy: 0.9381 - val_loss: 9.2690 - val_accuracy: 0.3540
Epoch 18/30
57/57 [==============================] - 103s 2s/step - loss: 0.3337 - accuracy: 0.8960 - val_loss: 1.6920 - val_accuracy: 0.7699
Epoch 19/30
57/57 [==============================] - 103s 2s/step - loss: 0.1869 - accuracy: 0.9292 - val_loss: 9.7153 - val_accuracy: 0.3628
Epoch 20/30
57/57 [==============================] - 103s 2s/step - loss: 0.2506 - accuracy: 0.9049 - val_loss: 0.9142 - val_accuracy: 0.7876
Epoch 21/30
57/57 [==============================] - 107s 2s/step - loss: 0.1941 - accuracy: 0.9358 - val_loss: 0.7740 - val_accuracy: 0.8142
Epoch 22/30
57/57 [==============================] - 103s 2s/step - loss: 0.0971 - accuracy: 0.9690 - val_loss: 0.5248 - val_accuracy: 0.8230
Epoch 23/30
57/57 [==============================] - 104s 2s/step - loss: 0.0549 - accuracy: 0.9845 - val_loss: 2.8425 - val_accuracy: 0.6637
Epoch 24/30
57/57 [==============================] - 107s 2s/step - loss: 0.0251 - accuracy: 0.9934 - val_loss: 0.1835 - val_accuracy: 0.9292
Epoch 25/30
57/57 [==============================] - 110s 2s/step - loss: 0.0131 - accuracy: 1.0000 - val_loss: 0.2147 - val_accuracy: 0.9469
Epoch 26/30
57/57 [==============================] - 103s 2s/step - loss: 0.0043 - accuracy: 1.0000 - val_loss: 0.1484 - val_accuracy: 0.9469
Epoch 27/30
57/57 [==============================] - 106s 2s/step - loss: 0.0029 - accuracy: 1.0000 - val_loss: 0.1338 - val_accuracy: 0.9558
Epoch 28/30
57/57 [==============================] - 107s 2s/step - loss: 0.0013 - accuracy: 1.0000 - val_loss: 0.1428 - val_accuracy: 0.9469
Epoch 29/30
57/57 [==============================] - 108s 2s/step - loss: 6.1017e-04 - accuracy: 1.0000 - val_loss: 0.1412 - val_accuracy: 0.9469
Epoch 30/30
57/57 [==============================] - 111s 2s/step - loss: 5.0776e-04 - accuracy: 1.0000 - val_loss: 0.1457 - val_accuracy: 0.9381
# 获取实际训练轮数
actual_epochs = len(history.history['accuracy'])acc = history.history['accuracy']
val_acc = history.history['val_accuracy']loss = history.history['loss']
val_loss = history.history['val_loss']epochs_range = range(actual_epochs)plt.figure(figsize=(12, 4))# 绘制准确率
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')# 绘制损失
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')plt.show()

二 CFResNet算法

是在ResNet基础上加上BN、FPN和SE-Net的组合神经网络

我们下面直接看模型代码和结果 

from keras import layers
from keras.layers import Input, Activation, BatchNormalization, Flatten, Dropout, Reshape
from keras.layers import Dense, Conv2D, MaxPooling2D, ZeroPadding2D, AveragePooling2D, GlobalAveragePooling2D
from keras.models import Model
from keras.layers import Add, UpSampling2D, Multiply, Concatenate# Squeeze-and-Excitation Block
def squeeze_excite_block(input_tensor, ratio=16):channel_axis = -1  # 通道轴通常在最后一维channels = input_tensor.shape[channel_axis]  # 获取通道数# Squeeze:全局平均池化x = GlobalAveragePooling2D()(input_tensor)x = Reshape((1, 1, channels))(x)# Excite:两个全连接层生成通道权重x = Dense(channels // ratio, activation='relu', kernel_initializer='he_normal', use_bias=False)(x)x = Dense(channels, activation='sigmoid', kernel_initializer='he_normal', use_bias=False)(x)# 将生成的权重与输入张量相乘x = Multiply()([input_tensor, x])return x# Identity Block
def identity_block(input_tensor, kernel_size, filters, stage, block):filters1, filters2, filters3 = filtersname_base = str(stage) + block + '_identity_block_'# 第一卷积层x = Conv2D(filters1, (1, 1), name=name_base + 'conv1')(input_tensor)x = BatchNormalization(name=name_base + 'bn1')(x)x = Activation('relu', name=name_base + 'relu1')(x)# 第二卷积层x = Conv2D(filters2, kernel_size, padding='same', name=name_base + 'conv2')(x)x = BatchNormalization(name=name_base + 'bn2')(x)x = Activation('relu', name=name_base + 'relu2')(x)# 第三卷积层x = Conv2D(filters3, (1, 1), name=name_base + 'conv3')(x)x = BatchNormalization(name=name_base + 'bn3')(x)# SE-Net通道注意力机制x = squeeze_excite_block(x)# 残差连接x = layers.add([x, input_tensor], name=name_base + 'add')x = Activation('relu', name=name_base + 'relu4')(x)return x# Conv Block
def conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2)):filters1, filters2, filters3 = filtersres_name_base = str(stage) + block + '_conv_block_res_'name_base = str(stage) + block + '_conv_block_'# 主卷积层x = Conv2D(filters1, (1, 1), strides=strides, name=name_base + 'conv1')(input_tensor)x = BatchNormalization(name=name_base + 'bn1')(x)x = Activation('relu', name=name_base + 'relu1')(x)x = Conv2D(filters2, kernel_size, padding='same', name=name_base + 'conv2')(x)x = BatchNormalization(name=name_base + 'bn2')(x)x = Activation('relu', name=name_base + 'relu2')(x)x = Conv2D(filters3, (1, 1), name=name_base + 'conv3')(x)x = BatchNormalization(name=name_base + 'bn3')(x)# 残差连接的卷积shortcut = Conv2D(filters3, (1, 1), strides=strides, name=res_name_base + 'conv')(input_tensor)shortcut = BatchNormalization(name=res_name_base + 'bn')(shortcut)# SE-Net通道注意力机制x = squeeze_excite_block(x)# 残差连接加和x = layers.add([x, shortcut], name=name_base + 'add')x = Activation('relu', name=name_base + 'relu4')(x)return x# Feature Pyramid Network (FPN)
def fpn_block(input_tensor, filters, name):# 上采样x = UpSampling2D(size=(2, 2), name=name + '_upsample')(input_tensor)x = Conv2D(filters, (1, 1), padding='same', name=name + '_conv')(x)x = BatchNormalization(name=name + '_bn')(x)return xdef ResNet50_with_FPN(input_shape=[224,224,3], classes=4):img_input = Input(shape=input_shape)x = ZeroPadding2D((3, 3))(img_input)# ResNet50 Backbone with SE Blockx = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(x)x = BatchNormalization(name='bn_conv1')(x)x = Activation('relu')(x)x = MaxPooling2D((3, 3), strides=(2, 2))(x)# ResNet50 Backbone with SE Blockc2 = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))c2 = identity_block(c2, 3, [64, 64, 256], stage=2, block='b')c2 = identity_block(c2, 3, [64, 64, 256], stage=2, block='c')c3 = conv_block(c2, 3, [128, 128, 512], stage=3, block='a')c3 = identity_block(c3, 3, [128, 128, 512], stage=3, block='b')c3 = identity_block(c3, 3, [128, 128, 512], stage=3, block='c')c3 = identity_block(c3, 3, [128, 128, 512], stage=3, block='d')c4 = conv_block(c3, 3, [256, 256, 1024], stage=4, block='a')c4 = identity_block(c4, 3, [256, 256, 1024], stage=4, block='b')c4 = identity_block(c4, 3, [256, 256, 1024], stage=4, block='c')c4 = identity_block(c4, 3, [256, 256, 1024], stage=4, block='d')c4 = identity_block(c4, 3, [256, 256, 1024], stage=4, block='e')c4 = identity_block(c4, 3, [256, 256, 1024], stage=4, block='f')c5 = conv_block(c4, 3, [512, 512, 2048], stage=5, block='a')c5 = identity_block(c5, 3, [512, 512, 2048], stage=5, block='b')c5 = identity_block(c5, 3, [512, 512, 2048], stage=5, block='c')# FPN Layer: create top-down and lateral connectionsp5 = Conv2D(256, (1, 1), padding='same', name='fpn_p5')(c5)p4 = fpn_block(p5, 256, 'fpn_p4')p3 = fpn_block(p4, 256, 'fpn_p3')p2 = fpn_block(p3, 256, 'fpn_p2')# Final classificationx = AveragePooling2D((7, 7), name='avg_pool')(c5)x = Flatten()(x)x = Dropout(0.5)(x)x = Dense(classes, activation='softmax', name='fc2')(x)model = Model(img_input, x, name='resnet50_with_fpn')return model# Instantiate the model
model = ResNet50_with_FPN()
model.summary()

 

Epoch 1/30
57/57 [==============================] - 124s 2s/step - loss: 1.7040 - accuracy: 0.5465 - val_loss: 4.1759 - val_accuracy: 0.2655
Epoch 2/30
57/57 [==============================] - 108s 2s/step - loss: 1.0829 - accuracy: 0.6615 - val_loss: 6.2262 - val_accuracy: 0.2655
Epoch 3/30
57/57 [==============================] - 110s 2s/step - loss: 0.8514 - accuracy: 0.7102 - val_loss: 7.9029 - val_accuracy: 0.2655
Epoch 4/30
57/57 [==============================] - 108s 2s/step - loss: 0.6071 - accuracy: 0.7743 - val_loss: 5.6822 - val_accuracy: 0.2655
Epoch 5/30
57/57 [==============================] - 107s 2s/step - loss: 0.6340 - accuracy: 0.7854 - val_loss: 2.8168 - val_accuracy: 0.2832
Epoch 6/30
57/57 [==============================] - 107s 2s/step - loss: 0.3986 - accuracy: 0.8562 - val_loss: 2.2164 - val_accuracy: 0.3894
Epoch 7/30
57/57 [==============================] - 108s 2s/step - loss: 0.4435 - accuracy: 0.8518 - val_loss: 1.9530 - val_accuracy: 0.5841
Epoch 8/30
57/57 [==============================] - 112s 2s/step - loss: 0.3334 - accuracy: 0.8650 - val_loss: 0.8318 - val_accuracy: 0.7522
Epoch 9/30
57/57 [==============================] - 109s 2s/step - loss: 0.2631 - accuracy: 0.9027 - val_loss: 0.3123 - val_accuracy: 0.8938
Epoch 10/30
57/57 [==============================] - 121s 2s/step - loss: 0.1918 - accuracy: 0.9336 - val_loss: 0.3432 - val_accuracy: 0.8584
Epoch 11/30
57/57 [==============================] - 111s 2s/step - loss: 0.2280 - accuracy: 0.9270 - val_loss: 3.3803 - val_accuracy: 0.6018
Epoch 12/30
57/57 [==============================] - 112s 2s/step - loss: 0.2377 - accuracy: 0.9137 - val_loss: 1.7401 - val_accuracy: 0.6283
Epoch 13/30
57/57 [==============================] - 112s 2s/step - loss: 0.2143 - accuracy: 0.9204 - val_loss: 1.9620 - val_accuracy: 0.6460
Epoch 14/30
57/57 [==============================] - 108s 2s/step - loss: 0.1334 - accuracy: 0.9602 - val_loss: 1.1494 - val_accuracy: 0.8142
Epoch 15/30
57/57 [==============================] - 107s 2s/step - loss: 0.2434 - accuracy: 0.9226 - val_loss: 1.5473 - val_accuracy: 0.7699
Epoch 16/30
57/57 [==============================] - 107s 2s/step - loss: 0.1815 - accuracy: 0.9425 - val_loss: 0.6820 - val_accuracy: 0.8230
Epoch 17/30
57/57 [==============================] - 107s 2s/step - loss: 0.1237 - accuracy: 0.9580 - val_loss: 0.5633 - val_accuracy: 0.8938
Epoch 18/30
57/57 [==============================] - 107s 2s/step - loss: 0.0653 - accuracy: 0.9779 - val_loss: 0.7569 - val_accuracy: 0.8496
Epoch 19/30
57/57 [==============================] - 106s 2s/step - loss: 0.1139 - accuracy: 0.9558 - val_loss: 5.6673 - val_accuracy: 0.4956
Epoch 20/30
57/57 [==============================] - 108s 2s/step - loss: 0.1208 - accuracy: 0.9535 - val_loss: 10.7703 - val_accuracy: 0.3628
Epoch 21/30
57/57 [==============================] - 107s 2s/step - loss: 0.1212 - accuracy: 0.9668 - val_loss: 184.4987 - val_accuracy: 0.2743
Epoch 22/30
57/57 [==============================] - 106s 2s/step - loss: 0.3250 - accuracy: 0.8938 - val_loss: 44.9149 - val_accuracy: 0.3451
Epoch 23/30
57/57 [==============================] - 106s 2s/step - loss: 0.1613 - accuracy: 0.9381 - val_loss: 3.1342 - val_accuracy: 0.7522
Epoch 24/30
57/57 [==============================] - 108s 2s/step - loss: 0.1241 - accuracy: 0.9558 - val_loss: 1.4571 - val_accuracy: 0.8142
Epoch 25/30
57/57 [==============================] - 108s 2s/step - loss: 0.1052 - accuracy: 0.9558 - val_loss: 0.5071 - val_accuracy: 0.8673
Epoch 26/30
57/57 [==============================] - 108s 2s/step - loss: 0.1868 - accuracy: 0.9403 - val_loss: 0.5222 - val_accuracy: 0.8584
Epoch 27/30
57/57 [==============================] - 107s 2s/step - loss: 0.0699 - accuracy: 0.9801 - val_loss: 1.3800 - val_accuracy: 0.6991
Epoch 28/30
57/57 [==============================] - 106s 2s/step - loss: 0.0975 - accuracy: 0.9712 - val_loss: 4.8408 - val_accuracy: 0.6372
Epoch 29/30
57/57 [==============================] - 108s 2s/step - loss: 0.0452 - accuracy: 0.9801 - val_loss: 0.3862 - val_accuracy: 0.8761
Epoch 30/30
57/57 [==============================] - 107s 2s/step - loss: 0.0164 - accuracy: 0.9978 - val_loss: 0.2110 - val_accuracy: 0.9292


文章转载自:

http://uNdVi5sY.bpmdg.cn
http://QLVc4vuR.bpmdg.cn
http://Tn3Klfwk.bpmdg.cn
http://nAPsWKQ9.bpmdg.cn
http://9ZdX4UTv.bpmdg.cn
http://QNqpgKjI.bpmdg.cn
http://q0tINFCT.bpmdg.cn
http://cYjhrDqz.bpmdg.cn
http://6Yy1RkYL.bpmdg.cn
http://mO6FWRJn.bpmdg.cn
http://M0oh7aK2.bpmdg.cn
http://IZXY6MGo.bpmdg.cn
http://qKzATpnL.bpmdg.cn
http://4cuooS0A.bpmdg.cn
http://RNn4y8gd.bpmdg.cn
http://nLdyvbeY.bpmdg.cn
http://dkpqLnr6.bpmdg.cn
http://Q2JgTxs0.bpmdg.cn
http://sDZgcDOA.bpmdg.cn
http://5qDdq68p.bpmdg.cn
http://K6t4iWHM.bpmdg.cn
http://yNEAJmPw.bpmdg.cn
http://RITnSgyi.bpmdg.cn
http://jPHznOkh.bpmdg.cn
http://MPew4nZR.bpmdg.cn
http://8AE0LHJC.bpmdg.cn
http://tfTpr7t5.bpmdg.cn
http://F70raQJF.bpmdg.cn
http://qWiQZMLA.bpmdg.cn
http://AAPtIIod.bpmdg.cn
http://www.dtcms.com/wzjs/619356.html

相关文章:

  • 企业网站模板素材网站建设到维护
  • c 网站开发流程eclipse网站开发实例
  • 九酷为什么做福音网站企业展厅布展设计
  • html网站标题怎么做的建网站找哪里
  • 互动网站如何做如何自己创造游戏
  • php网站制作软件自己建设网站模版
  • 网站建设的小故事网络设计目标及设计思想
  • 企业营销网站模板电商网站开发前景
  • 四川城乡和建设厅网站长春网站推广优化公司
  • 响应式网站 手机版目前什么编码做网站最好
  • 厦门网络建站公司wordpress 柒比贰主题
  • 怎么快速做网站排名免费的行情软件网站下载
  • seo竞争对手网站分析宣传册设计与制作模板免费
  • ps做网站字号大小做效果图展板网站
  • 怎么做网站图片seo电子商务网站建设系统
  • 九江专业的企业网站建设公司wordpress带会员中心的主题
  • 建立网站的方式建购物网站如何运营
  • 济宁房产网站建设网站怎么做自然优化
  • 网站开发图片文字wordpress打不开主页
  • 北京网站建设的价格天聊城网站推广动态
  • 临沂建站程序dedecms建设慕课网站
  • 做外贸网站空间多少g公司怎么在网上推广
  • 增城网站定制开发公司个人主页怎么填
  • 做游戏 网站关于网站建设公司大全
  • 舟山网站建设有哪些高端网站设计哪个好
  • 如何做家居网站wordpress页面是什么
  • 网站备案帐号找回密码旅游网站内容规划
  • jquery 的网站模板微信 存储wordpress
  • 临海最火自适应网站建设做效果图网上怎么找客户
  • 青岛网站排名外包建筑工程网上办事系统