当前位置: 首页 > wzjs >正文

响应式网站pad尺寸石家庄新闻综合频道

响应式网站pad尺寸,石家庄新闻综合频道,网站功能模块什么意思,企业形象设计包括什么如果一阶逻辑是数学这门形式化语言里的机器码,那么集合论就是数学这门形式化语言里的汇编码。 基本思想:从集合出发构建所有其它。 构建自然数构建整数构建有理数构建实数构建有序对、笛卡尔积、关系、函数、序列等构建确定有限自动机(DFA) 全景图 常…

如果一阶逻辑是数学这门形式化语言里的机器码,那么集合论就是数学这门形式化语言里的汇编码

基本思想:从集合出发构建所有其它

  • 构建自然数
  • 构建整数
  • 构建有理数
  • 构建实数
  • 构建有序对、笛卡尔积、关系、函数、序列等
  • 构建确定有限自动机(DFA)

全景图

离散数学全景图

         常量+变量+谓词+量词+函数           谓词:属于
命题逻辑------------------------->一阶逻辑----------->集合论-->所有其它

从集合出发构建一切

在数学和计算机科学中,集合论是构建一切的基础。通过集合,我们可以定义和描述几乎所有数学对象和计算机科学中的结构。本文将从集合出发,逐步展示如何构建自然数、整数、有理数、实数,以及更复杂的数学和计算机科学概念。


1. 集合论的基础

集合论的核心是集合隶属关系 ∈ \in )。集合是一些确定的、不同的对象的整体,这些对象称为集合的元素。通过集合,我们可以定义以下基本概念:

  • 空集 ∅ \emptyset ):不包含任何元素的集合。
  • 子集 A ⊆ B A \subseteq B AB):如果集合 A A A 的所有元素都属于集合 B B B,则 A A A B B B 的子集。
  • 并集 A ∪ B A \cup B AB):包含所有属于 A A A B B B 的元素的集合。
  • 交集 A ∩ B A \cap B AB):包含所有同时属于 A A A B B B 的元素的集合。
  • 差集 A ∖ B A \setminus B AB):包含所有属于 A A A 但不属于 B B B 的元素的集合。
  • 补集 A ‾ \overline{A} A):包含所有不属于 A A A 的元素的集合。

2. 从集合构建自然数

自然数( N \mathbb{N} N)是数学中最基本的数集之一。我们可以通过集合递归地定义自然数:

  • 0 = ∅ 0 = \emptyset 0=(空集)。
  • 1 = { 0 } = { ∅ } 1 = \{0\} = \{\emptyset\} 1={0}={}
  • 2 = { 0 , 1 } = { ∅ , { ∅ } } 2 = \{0, 1\} = \{\emptyset, \{\emptyset\}\} 2={0,1}={,{}}
  • 3 = { 0 , 1 , 2 } = { ∅ , { ∅ } , { ∅ , { ∅ } } } 3 = \{0, 1, 2\} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\} 3={0,1,2}={,{},{,{}}}
  • 以此类推。

通过这种方式,每个自然数都是一个集合,且自然数的顺序可以通过集合的包含关系来定义。

3. 从自然数构建整数

整数( Z \mathbb{Z} Z)包括自然数及其负数。我们可以通过有序对来定义整数:

  • 每个整数 z z z 可以表示为有序对 ( a , b ) (a, b) (a,b),其中 a a a b b b 是自然数。
  • 整数 z z z 的值定义为 a − b a - b ab
  • 例如, ( 3 , 0 ) (3, 0) (3,0) 表示 3 3 3 ( 0 , 3 ) (0, 3) (0,3) 表示 − 3 -3 3

通过这种方式,整数可以通过自然数的有序对来构建。

4. 从整数构建有理数

有理数( Q \mathbb{Q} Q)是可以表示为两个整数之比的数。我们可以通过有序对来定义有理数:

  • 每个有理数 q q q 可以表示为有序对 ( a , b ) (a, b) (a,b),其中 a a a b b b 是整数,且 b ≠ 0 b \neq 0 b=0
  • 有理数 q q q 的值定义为 a b \frac{a}{b} ba
  • 例如, ( 3 , 2 ) (3, 2) (3,2) 表示 3 2 \frac{3}{2} 23

通过这种方式,有理数可以通过整数的有序对来构建。

5. 从有理数构建实数

实数( R \mathbb{R} R)包括有理数和无理数。实数的构建较为复杂,通常通过戴德金分割柯西序列来定义:

  • 戴德金分割:将有理数集 Q \mathbb{Q} Q 分成两个非空集合 A A A B B B,使得 A A A 中的所有元素都小于 B B B 中的所有元素。每个实数对应一个戴德金分割。
  • 柯西序列:实数可以定义为有理数柯西序列的极限。柯西序列是一种收敛的有理数序列。

通过这种方式,实数可以通过有理数的结构来构建。

6. 从集合构建更复杂的数学对象

通过集合,我们可以定义更复杂的数学对象:

  • 有序对:有序对 ( a , b ) (a, b) (a,b) 可以定义为集合 { { a } , { a , b } } \{\{a\}, \{a, b\}\} {{a},{a,b}}
  • 笛卡尔积:集合 A A A B B B 的笛卡尔积 A × B A \times B A×B 是所有有序对 ( a , b ) (a, b) (a,b) 的集合,其中 a ∈ A a \in A aA b ∈ B b \in B bB
  • 关系:关系是笛卡尔积的子集。例如,等价关系、偏序关系等。
  • 函数:函数是一种特殊的关系,满足每个输入对应唯一的输出。
  • 序列:序列是函数的一种,定义域为自然数集 N \mathbb{N} N
  • 元组:元组是有限序列,可以表示为有序对的嵌套。

7. 从集合构建计算机科学概念

集合论在计算机科学中也有广泛应用。以下是一些例子:

  • 确定有限自动机(DFA)
    • DFA 可以表示为一个五元组 ( Q , Σ , δ , q 0 , F ) (Q, \Sigma, \delta, q_0, F) (Q,Σ,δ,q0,F)
      • Q Q Q 是状态的有限集合。
      • Σ \Sigma Σ 是输入符号的有限集合。
      • δ \delta δ 是转移函数,定义为 δ : Q × Σ → Q \delta: Q \times \Sigma \to Q δ:Q×ΣQ
      • q 0 q_0 q0 是初始状态。
      • F F F 是接受状态的集合。
    • 通过集合,DFA 的所有组成部分都可以被严格定义。

8. 总结

从集合出发,我们可以构建几乎所有数学和计算机科学中的结构:

  1. 自然数通过空集和递归定义。
  2. 整数通过自然数的有序对。
  3. 有理数通过整数的有序对。
  4. 实数通过有理数的戴德金分割或柯西序列。
  5. 更复杂的数学对象(如有序对、笛卡尔积、关系、函数、序列、元组)通过集合的组合和操作。
  6. 计算机科学概念(如 DFA)通过集合的严格定义。

集合论为数学和计算机科学提供了一个统一的框架,使得我们能够以严格和抽象的方式描述和操作各种对象。通过集合,我们可以从最基础的概念出发,逐步构建出复杂的数学和计算机科学结构。

http://www.dtcms.com/wzjs/613014.html

相关文章:

  • 外贸用什么网站开发客户58同城网络营销
  • 网站建设和程序开发哪个好无锡游戏网站建设公司
  • 泰州网站建设搭建中国十大培训机构影视后期
  • 网站设计 重庆seo优化主要工作内容
  • 网站建设入门 下载建网站费用明细
  • 山东济南网站建设安卓应用开发软件
  • 重庆网站推广专员信用网站建设内容
  • 平面设计图网站南京做网站团队
  • 深圳企业网站制作维护普通话考试最后一题万能模板
  • 网站搭建论文东昌府网站建设公司
  • 南阳市建设局网站wordpress更改字体大小
  • 南京做网站yuanmus表白网页制作软件手机版
  • 深圳专业建网站多少钱手机端网站做app开发
  • 互联网教育网站开发全平台内容系统免费
  • 怎么弄免费的php空间做网站微信答题小程序怎么做
  • 企业为啥要做网站wordpress loop count
  • 网站用亚马逊做标题会侵权吗高端网站优化公司
  • 做变性手术视频网站做国际贸易哪个网站好
  • 全球网站流量排名查询网站开发语言总结
  • 怎样自己做网站模板为什么建网站
  • 网站建设公司四川四川网站建设咨询
  • 免费的行情网站ifind是做动画网站
  • 网站图片设置要建一个网站该怎么做
  • 网站开发销售提成科技加盟网站建设
  • 国税网站建设调查报告网站做端口是什么问题
  • 男女做暖暖的试看网站什么是网站的后台
  • 分销网站有哪些公众号网页版
  • 网站维护建设东莞正规网页设计培训学费
  • 淘客推广效果阿里巴巴seo排名优化
  • 二级域名网站如何申请吗广州网站设计推荐刻