当前位置: 首页 > wzjs >正文

深圳网站建设小江淄博免费网站建设哪家好

深圳网站建设小江,淄博免费网站建设哪家好,wordpress备份数据,推广展示类网站基本模型 假设在二维直角坐标系中,可以用相互垂直的基向量和表示: 假设: 假设在上的投影为,那么: 所以: 用公式表达: 但是在实际中,基向量和不一定长度都是1,重新推导一…

基本模型

假设在二维直角坐标系中,\underset{C}{\rightarrow}可以用相互垂直的基向量\underset{A_1}{\rightarrow}\underset{A_2}{\rightarrow}表示:

假设:

\overrightarrow{A_1} = [1, 0]

\overrightarrow{A_2} = [0, 1]

\overrightarrow{C} = [2, 3]

假设\overrightarrow{C}\overrightarrow{A_1}上的投影为T_{\overrightarrow A_1}^{\overrightarrow C},那么:

T_{\overrightarrow A_1}^{\overrightarrow C} = \overrightarrow{C} \cdot \overrightarrow{A_1} = 2*1 + 3*0 = 2

T_{\overrightarrow A_2}^{\overrightarrow C} = \overrightarrow{C} \cdot \overrightarrow{A_2} = 2*0 + 3*1 = 3

所以:

\overrightarrow{C} = 2\overrightarrow{A_1} + 3\overrightarrow{A_2}

用公式表达:

\overrightarrow{C} = k_{1}\overrightarrow{A_1} + k_{2}\overrightarrow{A_2}

k_1 = T_{\overrightarrow A_1}^{\overrightarrow C} = \overrightarrow C \cdot \overrightarrow A_1

k_2 = T_{\overrightarrow A_2}^{\overrightarrow C} = \overrightarrow C \cdot \overrightarrow A_2

但是在实际中,基向量\underset{A_1}{\rightarrow}\underset{A_2}{\rightarrow}不一定长度都是1,重新推导一下:

假设:

\overrightarrow{A_1} = [5, 0]

\overrightarrow{A_2} = [0, 7]

\overrightarrow{C} = [2, 3]

那么:

k_1 = T_{\overrightarrow A_1}^{\overrightarrow C} = \frac { | \overrightarrow C | cos\theta } {| \overrightarrow A_1 |}

两边乘以| \overrightarrow A_1 |

k_1 = \frac { | \overrightarrow A_1 | | \overrightarrow C | cos\theta } {| \overrightarrow A_1 | ^2}

分子部分其实就是求\overrightarrow{C}\overrightarrow{A_1}上的投影与| \overrightarrow{A_1} |的乘积,所以:

k_1 = \frac { \overrightarrow A_1 \cdot \overrightarrow C } {| \overrightarrow A_1 | ^2}

带入数据:

k_1 = \frac {[5,0] \cdot [2, 3]}{\sqrt{5^2+0^0}^2} = \frac{5*2+0*3}{25} = \frac{2}{5}
大功告成。

结论:

\overrightarrow{C} = k_{1}\overrightarrow{A_1} + k_{2}\overrightarrow{A_2}

k_1 = T_{\overrightarrow A_1}^{\overrightarrow C} = \frac {\overrightarrow C \overrightarrow A_1}{|\overrightarrow A_1|^2}

k_2 = T_{\overrightarrow A_2}^{\overrightarrow C} = \frac {\overrightarrow C \overrightarrow A_2}{|\overrightarrow A_2|^2}

从二维到无限维

二维模型如下:

向量维度1的投影维度2的投影
\overrightarrow{C}23
\overrightarrow{A_1}10
\overrightarrow{A_2}01

扩展到三维:

向量维度1的投影维度2的投影维度3的投影
\overrightarrow{C}c1c2c3
\overrightarrow{A_1}100
\overrightarrow{A_2}010
\overrightarrow{A_3}001

可以看到,\overrightarrow{C}有多少个维度就要有多少个基向量,每个基向量的维度和\overrightarrow{C}相等。

扩展到无限维:

向量维度1的投影维度2的投影维度3的投影维度n的投影
\overrightarrow{C}c1c2c3cn
\overrightarrow{A_1}1000
\overrightarrow{A_2}0100
\overrightarrow{A_3}0010
\overrightarrow{A_n}0001

把函数当成无限维向量

把函数的t当成无限维,它的值分布在各自的维度上:

函数t_0t_1t_2t_n
f(t)f(t_0)f(t_1)f(t_2)f(t_n)
f_1(t)f_1(t_0)f_1(t_1)f_1(t_2)f_1(t_n)
f_2(t)f_2(t_0)f_2(t_1)f_2(t_2)f_2(t_n)
f_3(t)f_3(t_0)f_3(t_1)f_3(t_2)f_3(t_n)
f_n(t)f_n(t_0)f_n(t_1)f_n(t_2)f_n(t_n)

于是:

f(t) = k_1f_1(t) + k_2f_2(t) + ... + k_nf_n(t)

f(t) = \sum_{i=0}^{n} k_{i}f_i(t)

这里有个容易让人困惑的点:

前面的各个基向量都是这样的:

向量维度1的投影维度2的投影维度3的投影维度n的投影
\overrightarrow{A_1}1000
\overrightarrow{A_2}0100
\overrightarrow{A_3}0010
\overrightarrow{A_n}0001

每个向量只在自己的维度有值,在别的维度为0。

那现在的函数在别的维度上等于0吗?

不一定,但是没错。

首先各个维度的基向量是正交(垂直)的,比如:

T_{\overrightarrow{A_3}}^{\overrightarrow{A_1}} = \frac { \overrightarrow{A_1} \cdot \overrightarrow{A_3}} {|\overrightarrow{A_3}|^2} = \frac { [1,0,0] \cdot [0,0,1] }{\sqrt{0^2+0^2+3^2}^2} = 0

这里的函数其实也是正交的:

T_{f_3(t)}^{f_1(t)} = \frac { f_1(t) \cdot f_3(t) }{f_3(t) \cdot f_3(t)} = \frac { \sum_{0}^{t_n} f_1(t)f_3(t) } { \sum_{0}^{t_n} f_3(t)f_3(t) }

两边乘以dt

T_{f_3(t)}^{f_1(t)} = \frac { \frac { \int_{0}^{t_n} f_1(t)f_3(t) dt } {dt} } { \frac { \int_{0}^{t_n} f_3(t)f_3(t) dt } {dt} } = \frac {\int_{0}^{t_n} f_1(t)f_3(t) dt}{\int_{0}^{t_n} f_3(t)f_3(t) dt}

在傅里叶变换中:

各个基函数=sin(nw_0t)+cos(nw_0t) 

其中w_0是步长的意思,任你选取,n=1,2,...

总的意思就是f(t)可以表示成很多正交的、不同频率(一个频率就是一个维度)的三角函数之和。

可以证明:

sin(nw_0t)sin(kw_0t)正交,sin(nw_0t)cos(kw_0t)正交。

于是:

f_1(t) = sin(w_0t)

f_3(t) = sin(3w_0t)

T_{f_3(t)}^{f_1(t)} = \frac {\int_{0}^{t_n} f_1(t)f_3(t) dt}{\int_{0}^{t_n} f_3(t)f_3(t) dt} = 0

好了,f_i(t)已知了,k_i怎么求?

由前面的公式:

k_1 = T_{\overrightarrow A_1}^{\overrightarrow C} = \frac {\overrightarrow C \overrightarrow A_1}{|\overrightarrow A_1|^2}

可以推导出:

k_1 = T_{f_1(t)}^{f(t)} = \frac {f(t) \cdot f_1(t) }{f_1(t) \cdot f_1(t)} = \frac { \sum_{t=0}^{t_n}f(t) \cdot f_1(t) }{ \sum_{t=0}^{t_n} f_1(t) \cdot f_1(t)}

套用之前两边乘以dt的方法:

k_1 = \frac { \frac { \int_{0}^{t_n}f(t) f_1(t)dt}{dt} }{\frac { \int_{0}^{t_n}f_1(t) f_1(t)dt}{dt}}

k_1 = \frac { \int_{0}^{t_n}f(t) f_1(t)dt} { \int_{0}^{t_n}f_1(t) f_1(t)dt}

带入f_1(t) = sin(nw_0t)n = 1

k_1 = \frac { \int_{0}^{t_n}f(t) sin(nw_0t)dt} { \int_{0}^{t_n}sin(nw_0t) sin(nw_0t)dt}

k_1 = \frac { \int_{0}^{t_n}f(t) sin(nw_0t)dt} {t_n/2}

k_1 = \frac{2}{t_n} \int_{0}^{t_n}f(t) sin(nw_0t)dt

这便是傅里叶级数了。

其它

各个基函数必须是两两正交的,不然所有推导都是错的。

好多资料说两个函数的正交等于它们的内积:

f_1(t) \cdot f_3(t) = \int_{t=0}^{T} f_1(t)f_3(t) dt

但是由向量的点积推出来应该是这样才对:

f_1(t) \cdot f_3(t) = \frac { \int_{t=0}^{T} f_1(t)f_3(t) dt } {dt}

可这样也是不对的,不存在这种操作。在我的推导中用了这个等式,但是我分子分母约掉dt了,所以避开了。

http://www.dtcms.com/wzjs/603369.html

相关文章:

  • 网站维护员是做什么的wordpress 固定导航
  • 电子商务网站建设需要的语言及特点6wordpress mysql权限
  • 0531建设网站昆山品牌网站
  • h5网站搭建线上销售渠道有哪些
  • 志勋网站建设公司哪个公司开发小程序比较好
  • 如何做网站关键词搜索排名优化
  • 做企业云网站的企业金华百度推广公司
  • 网站视频大全湖北网站建设专家
  • 怎么自己制作网站平台重庆建设摩托车股份有限公司官网
  • 自己做文字壁纸的网站前端开发培训机构推荐
  • 四川住房城乡和城乡建设厅网站企业网站建设推广费用
  • 织梦网站备案购物网站建设费用
  • 做个网站得投入多少网站备案包括哪些东西
  • 淘宝美工做倒计时图片网站外贸 wordpress模板下载
  • 电子商务网站开发进什么科目网站本地可以打开
  • 图文网站源码深圳有限公司官网
  • 做韩国外贸网站南京建设工程质量监督站网站
  • 做淘宝客建网站用什么凡科建站教程
  • 成都网站制作服务wordpress趣味集
  • 济南网站制作推广上海企业自助建站系统
  • 郑州市网站建设公司查询网站备案服务商
  • 如何设计网站导航做网站应该注意哪些方面
  • 大望路网站制作山东网站建设排行榜
  • 百度怎样可以搜到自己的网站绿色食品网站模板
  • 大英网站建设工作亚马逊跨境电商入门完整教程
  • 自己做的网站网页滑动不拱墅网站建设制作
  • 潍坊中脉网站建设无锡网站设计公司电话
  • 内网网站建设所需硬件设备电商类网站怎么做推广
  • 补习吧 一家专门做家教的网站青岛建设厅网站
  • 做外贸哪个网站最好中国企业500强搜索版