当前位置: 首页 > wzjs >正文

淘客网站让别人做wordpress标题字体样式

淘客网站让别人做,wordpress标题字体样式,中石化石油工程建设公司官方网站,网络游戏美术设计专业EMD-SSA-VMD-LSTM混合模型 一、环境配置与依赖二、数据生成(示例数据)三、多级信号分解1. 经验模态分解(EMD)2. 奇异谱分析(SSA)3. 变分模态分解(VMD) 四、数据预处理1. 归一化处理2…

EMD-SSA-VMD-LSTM混合模型

  • 一、环境配置与依赖
  • 二、数据生成(示例数据)
  • 三、多级信号分解
    • 1. 经验模态分解(EMD)
    • 2. 奇异谱分析(SSA)
    • 3. 变分模态分解(VMD)
  • 四、数据预处理
    • 1. 归一化处理
    • 2. 数据集构建
  • 五、混合LSTM模型
    • 1. 模型架构
    • 2. 模型训练
  • 六、预测与结果重构
    • 1. 多步预测
    • 2. 结果反归一化
  • 七、性能评估与可视化
    • 1. 评估指标
    • 2. 结果可视化
  • 八、完整数据流说明
  • 九、参数调优建议
  • 十、扩展方向
  • 源码说明

以下是使用Python实现EMD-SSA-VMD-LSTM混合模型进行时间序列预测的完整代码,结合经验模态分解(EMD)、奇异谱分析(SSA)、变分模态分解(VMD)与LSTM深度学习模型。该方案适用于复杂非平稳信号的预测任务,代码包含数据生成、多级分解、模型构建和结果可视化。


一、环境配置与依赖

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from PyEMD import EMD
from vmdpy import VMD
from scipy.linalg import hankel, svd
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_absolute_error, mean_squared_error
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader# 设置随机种子保证可复现性
np.random.seed(42)
torch.manual_seed(42)

二、数据生成(示例数据)

def generate_complex_signal(length=1000):"""生成含多成分的非平稳信号"""t = np.linspace(0, 10, length)# 趋势项trend = 0.02 * t**2 + 0.1 * t# 周期成分seasonal1 = 1.5 * np.sin(2 * np.pi * 0.8 * t)seasonal2 = 0.8 * np.cos(2 * np.pi * 2.5 * t)# 脉冲噪声impulse = np.zeros(length)impulse[np.random.choice(length, 20)] = np.random.uniform(-3, 3, 20)# 高斯噪声noise = 0.3 * np.random.randn(length)return trend + seasonal1 + seasonal2 + impulse + noise# 生成数据并可视化
data = generate_complex_signal()
plt.figure(figsize=(12,4))
plt.plot(data, color='darkblue')
plt.title("Generated Non-stationary Signal")
plt.show()

三、多级信号分解

1. 经验模态分解(EMD)

def emd_decomposition(signal):emd = EMD()imfs = emd(signal)return imfsimfs_emd = emd_decomposition(data)
print(f"EMD分解得到 {imfs_emd.shape[0]} 个IMF分量")

2. 奇异谱分析(SSA)

def ssa_decomposition(signal, window=30, rank=3):"""奇异谱分析核心函数"""# 构建轨迹矩阵L = windowK = len(signal) - L + 1X = hankel(signal[:L], signal[L-1:])# 奇异值分解U, S, VT = svd(X, full_matrices=False)# 选择主成分重构X_rank = (U[:, :rank] * S[:rank]) @ VT[:rank, :]# 对角平均化reconstructed = np.zeros_like(signal)for i in range(len(signal)):X_diag = np.diagonal(X_rank, offset=-(L-1-i))reconstructed[i] = X_diag.mean() if X_diag.size > 0 else 0return reconstructed# 对每个EMD-IMF执行SSA分解
components_ssa = []
for imf in imfs_emd:ssa_comp = ssa_decomposition(imf, window=30, rank=3)components_ssa.append(ssa_comp)

3. 变分模态分解(VMD)

def vmd_decomposition(signal, alpha=2000, K=4):u, _, _ = VMD(signal, alpha=alpha, tau=0, K=K, DC=0, init=1, tol=1e-7)return u# 对SSA结果进行VMD分解
final_components = []
for comp in components_ssa:vmd_comps = vmd_decomposition(comp, K=2)final_components.extend(vmd_comps)# 合并所有分量
all_components = np.vstack(final_components)
print(f"总分解分量数: {all_components.shape[0]}")

四、数据预处理

1. 归一化处理

scalers = []
scaled_components = []
for comp in all_components:scaler = MinMaxScaler(feature_range=(-1, 1))scaled = scaler.fit_transform(comp.reshape(-1, 1)).flatten()scaled_components.append(scaled)scalers.append(scaler)scaled_components = np.array(scaled_components)

2. 数据集构建

class HybridDataset(Dataset):def __init__(self, components, lookback=60, horizon=1):self.components = componentsself.lookback = lookbackself.horizon = horizondef __len__(self):return self.components.shape[1] - self.lookback - self.horizon + 1def __getitem__(self, idx):x = self.components[:, idx:idx+self.lookback].T  # (lookback, n_components)y = self.components[:, idx+self.lookback:idx+self.lookback+self.horizon].Treturn torch.FloatTensor(x), torch.FloatTensor(y)lookback = 60
horizon = 1
dataset = HybridDataset(scaled_components, lookback, horizon)
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)

五、混合LSTM模型

1. 模型架构

class MultiScaleLSTM(nn.Module):def __init__(self, input_size, hidden_size=128, output_size=1):super().__init__()# 特征提取层self.lstm1 = nn.LSTM(input_size, hidden_size, batch_first=True)self.dropout1 = nn.Dropout(0.3)# 时序预测层self.lstm2 = nn.LSTM(hidden_size, hidden_size//2, batch_first=True)self.dropout2 = nn.Dropout(0.2)# 输出层self.fc = nn.Linear(hidden_size//2, output_size)def forward(self, x):# 输入形状: (batch_size, seq_len, input_size)out, (h, c) = self.lstm1(x)out = self.dropout1(out)out, _ = self.lstm2(out)out = self.dropout2(out[:, -1, :])return self.fc(out)

2. 模型训练

model = MultiScaleLSTM(input_size=scaled_components.shape[0])
criterion = nn.MSELoss()
optimizer = torch.optim.AdamW(model.parameters(), lr=0.001, weight_decay=1e-4)# 训练循环
for epoch in range(100):total_loss = 0for x, y in dataloader:optimizer.zero_grad()pred = model(x)loss = criterion(pred, y.squeeze())loss.backward()optimizer.step()total_loss += loss.item()print(f"Epoch {epoch+1}/100 | Loss: {total_loss/len(dataloader):.4f}")

六、预测与结果重构

1. 多步预测

def recursive_forecast(model, initial_seq, steps=50):current_seq = initial_seq.clone()predictions = []for _ in range(steps):with torch.no_grad():pred = model(current_seq.unsqueeze(0))predictions.append(pred.numpy()[0][0])# 更新输入序列current_seq = torch.cat([current_seq[1:], pred.unsqueeze(0)])return np.array(predictions)# 获取初始序列
test_input = scaled_components[:, -lookback:]
test_input = torch.FloatTensor(test_input.T)  # (lookback, n_components)# 执行预测
pred_steps = 50
prediction = recursive_forecast(model, test_input, pred_steps)

2. 结果反归一化

# 重构所有分量预测
pred_components = []
for i in range(len(scalers)):pred_scaled = prediction * 0  # 初始化pred_scaled[i::len(scalers)] = prediction  # 分量位置插值pred_components.append(scalers[i].inverse_transform(pred_scaled.reshape(-1, 1)))# 合成最终结果
final_pred = np.sum(pred_components, axis=0).flatten()# 获取真实值
true_values = data[-pred_steps:]

七、性能评估与可视化

1. 评估指标

mae = mean_absolute_error(true_values, final_pred)
rmse = np.sqrt(mean_squared_error(true_values, final_pred))
print(f"MAE: {mae:.4f}")
print(f"RMSE: {rmse:.4f}")

2. 结果可视化

plt.figure(figsize=(12,6))
plt.plot(true_values, label='True', marker='o', linestyle='--')
plt.plot(final_pred, label='Predicted', marker='x', linewidth=2)
plt.fill_between(range(len(final_pred)), final_pred - 1.96*rmse, final_pred + 1.96*rmse, alpha=0.2, color='orange')
plt.title("EMD-SSA-VMD-LSTM Multi-step Prediction")
plt.legend()
plt.grid(True)
plt.show()

八、完整数据流说明

步骤技术实现数学表达
信号生成合成趋势项+周期项+噪声 x ( t ) = ∑ i = 1 n a i f i ( t ) + ϵ ( t ) x(t) = \sum_{i=1}^{n} a_i f_i(t) + \epsilon(t) x(t)=i=1naifi(t)+ϵ(t)
EMD分解自适应分解非平稳信号 x ( t ) = ∑ k = 1 K c k ( t ) + r ( t ) x(t) = \sum_{k=1}^{K} c_k(t) + r(t) x(t)=k=1Kck(t)+r(t)
SSA分解轨迹矩阵SVD分解 X = U Σ V T \mathbf{X} = \mathbf{U\Sigma V}^T X=UΣVT
VMD分解变分模态优化分解 min ⁡ { u k } , { ω k } ∑ k ∥ ∂ t [ u k ( t ) e − j ω k t ] ∥ 2 2 \min_{\{u_k\},\{\omega_k\}} \sum_k \|\partial_t[u_k(t)e^{-j\omega_k t}]\|_2^2 {uk},{ωk}minkt[uk(t)ejωkt]22
特征融合多分量时序对齐 X stack = [ C 1 T ; C 2 T ; … ; C n T ] \mathbf{X}_{\text{stack}} = [\mathbf{C}_1^T; \mathbf{C}_2^T; \dots; \mathbf{C}_n^T] Xstack=[C1T;C2T;;CnT]
LSTM建模门控机制时序建模 f t = σ ( W f ⋅ [ h t − 1 , x t ] + b f ) f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f) ft=σ(Wf[ht1,xt]+bf)
结果重构逆归一化加权求和 y ^ = ∑ k = 1 K scaler k − 1 ( c ^ k ) \hat{y} = \sum_{k=1}^{K} \text{scaler}_k^{-1}(\hat{c}_k) y^=k=1Kscalerk1(c^k)

九、参数调优建议

参数优化策略典型值范围
EMD最大IMF数根据信号复杂度调整5-10
SSA窗口长度取1/3周期长度20-50
VMD模态数(K)频谱分析确定3-6
LSTM隐藏层防止过拟合64-256
学习率余弦退火调整1e-4~1e-3
输入序列长度覆盖主要周期60-120

十、扩展方向

  1. 自适应分解

    # 自动确定VMD的K值
    from vmdpy import VMD
    def auto_vmd(signal, max_K=8):for K in range(3, max_K+1):u, _, _ = VMD(signal, alpha=2000, K=K)if np.any(np.isnan(u)):return K-1return max_K
    
  2. 概率预测

    # 修改输出层为分位数回归
    self.fc = nn.Linear(hidden_size//2, 3)  # 输出3个分位数
    
  3. 在线学习

    # 增量训练机制
    def online_update(model, new_data):model.train()optimizer.zero_grad()outputs = model(new_data)loss = criterion(outputs, targets)loss.backward()optimizer.step()
    

源码说明

  1. 数据兼容性

    • 支持CSV输入:修改generate_complex_signal()pd.read_csv()
    • 多变量扩展:调整输入维度为(n_features, seq_len)
  2. 性能优化

    • 启用CUDA加速:model.to('cuda')
    • 使用混合精度训练:scaler = torch.cuda.amp.GradScaler()
  3. 工业级部署

    # 模型保存与加载
    torch.save(model.state_dict(), 'multiscale_lstm.pth')
    model.load_state_dict(torch.load('multiscale_lstm.pth'))
    

该方案通过三级分解(EMD-SSA-VMD)充分提取信号多尺度特征,结合深度LSTM建模复杂时序依赖,在非平稳信号预测中展现出显著优势。实际应用时需根据数据特性调整分解参数与模型结构,并通过误差分析持续优化。

http://www.dtcms.com/wzjs/589329.html

相关文章:

  • 网站制作报价是否合法漯河市建设工程信息网
  • sqlite做网站做电影网站要多少钱
  • 北京市住房及城乡建设部网站phpadmin wordpress
  • 企业的网站建设制作平台本站3天更换一次域名yw
  • 做同城信息网站怎么赚钱网站云服务器租用
  • 台州网站设计 解放路软件开发者是什么意思
  • 网站开发技术协议怎么写一个网站建设域名的构思
  • 营销型网站建设明细报龙溪网站建设企业
  • 江苏响应式网站建设哪里有做网站技术方法有
  • asp官方网站网站是不是每年都要续费
  • 怎做网站手机俄文企业网站制作
  • 建立企业网站价格宁波软件开发
  • 广州做网站appwordpress 即时预约
  • 网站建设工作室需要哪些设备网站开发师是做什么的
  • 剧院网站建设网站开发行业代码
  • 小程序开发公司案例免费做优化的网站
  • 假发网站建设怎么评价一个网站做的好否
  • 淘宝小网站怎么做的广告视频
  • 搭积木建网站软件手机网页无法打开因为reset
  • 邢台网站制作公司长沙网络推广联系昔年下拉
  • 深圳动态科技集团网站网站开发有哪些方向
  • 提供秦皇岛网站建设哪里有网站建设小公司生存
  • 广西医院的网站建设手机排行榜2024前十名最新
  • 检查网站的跳转路径是否清晰 哪里要优化仿唧唧帝笑话门户网站源码带多条采集规则 织梦搞笑图片视频模板
  • 标准件网站开发python自学网站
  • 上海网站开发设计培训phpcms移动端网站怎么做
  • 上海南山做网站含山县住房和城乡建设局网站
  • 做企业网站不好混建设网站免费模板下载
  • 石河子做网站企业网站建设代理商
  • 移动网站建设平台兰州网站建设q479185700強