当前位置: 首页 > wzjs >正文

手机电视网站大全石家庄工程造价信息网官网

手机电视网站大全,石家庄工程造价信息网官网,如何在网站上木马,二维码表白网页在线生成制作以下是当前主流的大模型训练与推理框架的全面汇总 以下是更新后包含 SGLang 的大模型训练与推理框架列表,并对分类和示例进行了优化: 一、通用深度学习推理框架 TensorRT-LLM 特点:NVIDIA推出的针对Transformer类模型的优化框架,支…

以下是当前主流的大模型训练与推理框架的全面汇总

在这里插入图片描述

以下是更新后包含 SGLang 的大模型训练与推理框架列表,并对分类和示例进行了优化:


一、通用深度学习推理框架

  1. TensorRT-LLM

    • 特点:NVIDIA推出的针对Transformer类模型的优化框架,支持多GPU分布式推理和低精度量化。
    • 示例:加速BERT、GPT-3等模型推理,集成Kernel融合和矩阵乘优化技术。
  2. ONNX Runtime

    • 特点:跨框架模型部署工具,支持ONNX格式模型的硬件无关优化。
    • 示例:将PyTorch或TensorFlow模型转换为ONNX格式后部署到CPU/GPU。
  3. OpenVINO

    • 特点:英特尔开发的跨平台推理工具,支持CPU/VPU/FPGA硬件加速。
    • 示例:图像分类模型(如ResNet)在英特尔CPU上的高效推理。
  4. FasterTransformer

    • 特点:NVIDIA优化的Transformer推理库,支持Tensor Core加速。
    • 示例:BERT和GPT模型在NVIDIA GPU上的低延迟推理。
  5. MNN

    • 特点:阿里巴巴推出的轻量级推理框架,支持移动端和边缘设备。
    • 示例:移动端图像识别模型的部署。

二、大语言模型(LLM)专用框架

  1. vLLM

    • 特点:基于PagedAttention技术的高吞吐量引擎,支持动态批处理。
    • 示例:部署Llama、GPT-4等模型,吞吐量比HuggingFace高10倍以上。
  2. HuggingFace TGI (Text Generation Inference)

    • 特点:支持多GPU扩展和量化方案,兼容HuggingFace模型库。
    • 示例:部署Falcon-180B或Llama 2-70B等万亿参数模型。
  3. DeepSpeed-Inference

    • 特点:微软开发的分布式推理框架,集成ZeRO优化器和3D并行技术。
    • 示例:千亿参数模型(如Megatron-Turing NLG)的多节点推理。
  4. Llama.cpp

    • 特点:纯C++实现的轻量级推理引擎,支持CPU端4-bit量化。
    • 示例:在MacBook上运行Llama-7B模型,无需GPU。
  5. LMDeploy

    • 特点:支持模型量化、服务化部署和性能监控。
    • 示例:百川智能系列模型的低资源部署。
  6. SGLang

    • 特点:面向复杂提示工程的推理优化框架,通过结构化生成语言(Structured Generation Language)提升多轮对话、分支逻辑等场景的效率。
    • 示例:处理需要嵌套条件判断的复杂提示(如多步骤数学推理),通过缓存中间结果减少重复计算,响应速度提升30%以上。

三、新兴框架与工具

  1. TensorFlow Serving

    • 特点:专为TensorFlow模型设计的服务化框架,支持多版本管理。
    • 示例:部署TensorFlow SavedModel格式的分类模型。
  2. Ollama

    • 特点:用户友好的本地LLM运行工具,支持一键启动模型。
    • 示例:在本地运行Mistral或Gemma模型。
  3. MLC-LLM

    • 特点:支持多种硬件后端(如WebGPU、Vulkan)。
    • 示例:在浏览器中运行量化后的语言模型。
  4. PowerInfer

    • 特点:基于稀疏激活模式的CPU-GPU混合推理框架。
    • 示例:在消费级GPU上高效运行大型模型。

四、量化与压缩工具

  1. bitsandbytes

    • 特点:支持8-bit和4-bit量化,与HuggingFace无缝集成。
    • 示例:将Llama-2模型量化为4-bit后部署。
  2. AWQ (Activation-aware Weight Quantization)

    • 特点:基于激活感知的权重量化算法,精度损失小。
    • 示例:量化OPT-175B模型并保持90%以上准确率。
  3. GPTQ

    • 特点:基于梯度信息的后训练量化方法。
    • 示例:将BERT模型压缩至2-bit仍保持高精度。

五、其他特色框架

  1. LightLLM

    • 特点:极简设计,专注于低资源环境下的推理优化。
  2. ScaleLLM

    • 特点:支持千卡集群的超大规模模型推理。
  3. Llamafile

    • 特点:将模型与运行时打包为单个可执行文件,便于分发。

常用示例场景

场景推荐框架优势
高吞吐量在线服务vLLM、TGI动态批处理、PagedAttention优化
复杂提示工程SGLang结构化生成、中间结果复用
边缘设备部署Llama.cpp、MNN低资源消耗、支持CPU推理
多GPU分布式推理DeepSpeed、TensorRT-LLM3D并行、高效显存管理
快速原型开发Ollama、Transformers易用性高、社区支持完善
量化压缩bitsandbytes、AWQ低精度量化、最小化精度损失

总结

当前主流框架超过23种(完整列表可参考),核心选择需结合以下因素:

  1. 硬件环境:GPU型号(如NVIDIA/AMD)、CPU架构、边缘设备类型。
  2. 模型类型:Transformer类模型优先选vLLM或FasterTransformer,轻量化模型可选Llama.cpp。
  3. 部署需求:服务化场景用TGI或TensorRT-LLM,本地开发用Ollama或LM Studio。

如需完整框架列表及技术对比,可进一步查阅 大模型推理框架总结。

http://www.dtcms.com/wzjs/585996.html

相关文章:

  • 移动网站制作价格百度网站如何做
  • wordpress最近浏览器广州网站优化价格
  • 培训机构网站本地打开WordPress慢
  • 网站开发英文怎么说网站flash制作教程
  • 网站计数器代码js石材网站模板
  • 专业建设网站公司排名国内cms推荐
  • 南京网站建设培训网站建设广告平台推广
  • 阿里巴巴网站服务内容wordpress建图片网站
  • 域名网站备案管理系统wordpress驳回评论
  • wordpress开发企业网站wordpress建设资源站点插件
  • 织梦怎么做英文版网站中国建设银行积分兑换网站
  • 做网站找哪家公司好wordpress 轻博客
  • 长春网站优化教程网站建设客户合同
  • 万户网站建设成都建站seo
  • 网站域名收费标准动画设计工资
  • wordpress增加标签濮阳seo网站建设
  • 网站源码安装步骤未备案网站加速
  • 北京网站设计制作关键词山东省城乡建设网站
  • 徐州做网站建设清溪东莞网站建设
  • 做网站的人跑了网站可以恢复吗seo博客网站
  • 网站建设费用不用摊销做网站广告公司
  • 溧阳网站建设制作做一个专业的网站多少钱
  • 嘉兴网站制作价格杭州建设信息港官网
  • 赔率网站怎么做河南比较出名的外贸公司
  • 厦门中科做网站总打电话来最主流的网页制作软件
  • 交互式手机网站工业互联网平台建设及推广指南
  • 有哪些开发网站公司wordpress下载按钮插件
  • 济南手机网站开发公司wordpress 上传pdf附件
  • 网站打不开第二天不收录啦个人开发网站
  • 东莞网站推广哪些铁法能源公司网站