当前位置: 首页 > wzjs >正文

奇迹网站建设多少钱有什么专业做蛋糕的网站吗

奇迹网站建设多少钱,有什么专业做蛋糕的网站吗,html做游戏网站,wordpress themeforest一道比较简单的题。(我绝对不会告诉你这题我改了很久) 题目意思很简单,我就不过多解释了,我们直接进入正题。 题目要我们求 a a a 个 1 1 1 组成的数与 b b b 个 1 1 1 组成的数的最小公倍数除以 m m m 后的余数。先不考虑…

一道比较简单的题。(我绝对不会告诉你这题我改了很久)

题目意思很简单,我就不过多解释了,我们直接进入正题。

题目要我们求 a a a 1 1 1 组成的数与 b b b 1 1 1 组成的数的最小公倍数除以 m m m 后的余数。先不考虑多的,我们先设定一个函数 change ⁡ ( x ) \operatorname{change}(x) change(x) 表示由 x x x 1 1 1 组成的数,也就是这个:

change ⁡ ( x ) = 111111...11 ⏟ x 个 1 \operatorname{change}(x)=\underbrace{111111...11}_{x\text{个}1} change(x)=x1 111111...11

写的更加数学化一点就是:

change ⁡ ( x ) = 1 0 x − 1 9 \operatorname{change}(x)=\frac{10^x-1}{9} change(x)=910x1

那么我们要求的答案就是:

lcm ⁡ ( change ⁡ ( a ) , change ⁡ ( b ) ) m o d m \operatorname{lcm}(\operatorname{change}(a),\operatorname{change}(b))\bmod m lcm(change(a),change(b))modm

同时又有 lcm ⁡ ( x , y ) = x × y ÷ gcd ⁡ ( x , y ) \operatorname{lcm}(x,y)=x\times y\div\operatorname{gcd}(x,y) lcm(x,y)=x×y÷gcd(x,y)

所以说:

a n s = change ⁡ ( a ) × change ⁡ ( b ) ÷ gcd ⁡ ( change(a) ⁡ , change(b) ⁡ ) m o d m ans=\operatorname{change}(a)\times\operatorname{change}(b)\div\operatorname{gcd}(\operatorname{change(a)},\operatorname{change(b)})\bmod m ans=change(a)×change(b)÷gcd(change(a),change(b))modm

但我们仔细发现: gcd ⁡ ( change ⁡ ( a ) , change ⁡ ( b ) ) \operatorname{gcd}(\operatorname{change}(a),\operatorname{change}(b)) gcd(change(a),change(b)) 这东西也不好求啊,如果我们能把它转化成 a a a b b b 之间的关系就好了。

那么接下来,让我们用感性的思维去看一看这个式子,直觉告诉我们: gcd ⁡ ( change ⁡ ( a ) , change ⁡ ( b ) ) = change ⁡ ( gcd ⁡ ( a , b ) ) \operatorname{gcd}(\operatorname{change}(a),\operatorname{change}(b))=\operatorname{change}(\operatorname{gcd}(a,b)) gcd(change(a),change(b))=change(gcd(a,b))。以下是证明过程。

证明: 假设 1111...11 ⏟ t 个 1 \underbrace{1111...11}_{t\text{个}1} t1 1111...11 同时是 11111...11 ⏟ a 个 1 \underbrace{11111...11}_{a\text{个}1} a1 11111...11 111111...11 ⏟ b 个 1 \underbrace{111111...11}_{b\text{个}1} b1 111111...11 的公因数,则:

111111...11 ⏟ b 个 1 = 1111...11 ⏟ t 个 1 × 1 000...00 ⏟ t − 1 个 0 1 000...00 ⏟ t − 1 个 0 1...1 000...00 ⏟ t − 1 个 0 1 11111...11 ⏟ a 个 1 = 1111...11 ⏟ t 个 1 × 1 000...00 ⏟ t − 1 个 0 1 000...00 ⏟ t − 1 个 0 1...1 000...00 ⏟ t − 1 个 0 1 \underbrace{111111...11}_{b\text{个}1}=\underbrace{1111...11}_{t\text{个}1}\times1\underbrace{000...00}_{t-1\text{个}0}1\underbrace{000...00}_{t-1\text{个}0}1...1\underbrace{000...00}_{t-1\text{个}0}1\\\underbrace{11111...11}_{a\text{个}1}=\underbrace{1111...11}_{t\text{个}1}\times1\underbrace{000...00}_{t-1\text{个}0}1\underbrace{000...00}_{t-1\text{个}0}1...1\underbrace{000...00}_{t-1\text{个}0}1 b1 111111...11=t1 1111...11×1t10 000...001t10 000...001...1t10 000...001a1 11111...11=t1 1111...11×1t10 000...001t10 000...001...1t10 000...001

第一个式子中 000...00 ⏟ t − 1 个 0 1 \underbrace{000...00}_{t-1\text{个}0}1 t10 000...001 这样的循环一共有 b t \frac{b}{t} tb 个,第二个式子中这样的循环则有 a t \frac{a}{t} ta 个,因为要有整数个循环,所以 b t \frac{b}{t} tb a t \frac{a}{t} ta 都是整数,所以 t t t a , b a,b a,b 的公因数。而我们要 1111...11 ⏟ t 个 1 \underbrace{1111...11}_{t\text{个}1} t1 1111...11 最大,所以 t t t 就要是 a , b a,b a,b 的最大公因数,即 t = gcd ⁡ ( a , b ) t=\operatorname{gcd}(a,b) t=gcd(a,b)

由上,我们可以得到:

gcd ⁡ ( 11111...11 ⏟ a 个 1 , 111111...11 ⏟ b 个 1 ) = 111111...11 ⏟ t 个 1 = 111111...11 ⏟ gcd ⁡ ( a , b ) 个 1 \operatorname{gcd}(\underbrace{11111...11}_{a\text{个}1},\underbrace{111111...11}_{b\text{个}1})=\underbrace{111111...11}_{t\text{个}1}=\underbrace{111111...11}_{\operatorname{gcd}(a,b)\text{个}1} gcd(a1 11111...11,b1 111111...11)=t1 111111...11=gcd(a,b)1 111111...11

转化一下就成了:

gcd ⁡ ( change ⁡ ( a ) , change ⁡ ( b ) ) = change ⁡ ( gcd ⁡ ( a , b ) ) \operatorname{gcd}(\operatorname{change}(a),\operatorname{change}(b))=\operatorname{change}(\operatorname{gcd}(a,b)) gcd(change(a),change(b))=change(gcd(a,b))

所以,我们得到了这样一个等式:

a n s = change ⁡ ( a ) × change ⁡ ( b ) ÷ change ⁡ ( gcd ⁡ ( a , b ) ) ans=\operatorname{change}(a)\times\operatorname{change}(b)\div\operatorname{change}(\operatorname{gcd}(a,b)) ans=change(a)×change(b)÷change(gcd(a,b))

但这样我们又要算三遍 change ⁡ ( x ) \operatorname{change}(x) change(x),有没有什么办法可以优化?

这里呢我是采用了倍分的思想。

在上面的证明过程中,我们将 111111...11 ⏟ b 个 1 \underbrace{111111...11}_{b\text{个}1} b1 111111...11 拆成了 1111...11 ⏟ t 个 1 × 1 000...00 ⏟ t − 1 个 0 1 000...00 ⏟ t − 1 个 0 1...1 000...00 ⏟ t − 1 个 0 1 \underbrace{1111...11}_{t\text{个}1}\times1\underbrace{000...00}_{t-1\text{个}0}1\underbrace{000...00}_{t-1\text{个}0}1...1\underbrace{000...00}_{t-1\text{个}0}1 t1 1111...11×1t10 000...001t10 000...001...1t10 000...001,我们沿用这个思路,如果我们把 change ⁡ ( a ) \operatorname{change}(a) change(a) 归为一类, change ⁡ ( b ) ÷ change ⁡ ( gcd ⁡ ( a , b ) ) \operatorname{change}(b)\div\operatorname{change}(\operatorname{gcd}(a,b)) change(b)÷change(gcd(a,b)) 归为一类,那我们就只需要解决后半部分值的问题就行了,后半部分又该怎么做呢?

我们将这个式子转化一下,就成了:

change ⁡ ( b ) ÷ change ⁡ ( t ) = 111111...11 ⏟ b 个 1 ÷ 1111...11 ⏟ t 个 1 = 1 000...00 ⏟ t − 1 个 0 1 000...00 ⏟ t − 1 个 0 1...1 000...00 ⏟ t − 1 个 0 1 \begin{equation}\begin{split}&\operatorname{change}(b)\div\operatorname{change}(t)\\&=\underbrace{111111...11}_{b\text{个}1}\div\underbrace{1111...11}_{t\text{个}1}\\&=1\underbrace{000...00}_{t-1\text{个}0}1\underbrace{000...00}_{t-1\text{个}0}1...1\underbrace{000...00}_{t-1\text{个}0}1\end{split}\end{equation} change(b)÷change(t)=b1 111111...11÷t1 1111...11=1t10 000...001t10 000...001...1t10 000...001

而这又有 b t \frac{b}{t} tb 个循环,因为 t = gcd ⁡ ( a , b ) t=\operatorname{gcd}(a,b) t=gcd(a,b),所以就有 b ÷ gcd ⁡ ( a , b ) b\div\operatorname{gcd}(a,b) b÷gcd(a,b) 个循环。到这,整个思路就彻底结束了。

代码实现:

#include<bits/stdc++.h>
#define int long long
using namespace std;
int a,b,m;
int gcd(int x,int y) {if(y==0) {return x;}return gcd(y,x%y);
}
int qpow(int x,int y) {//快速幂int z=1;while(y) {if(y&1) {z=z*x%m;}y>>=1;x=x*x%m;}return z;
}
int answer(int x,int y) {int now=1,po=qpow(10,y),ans=0;while(x) {if(x&1) {ans=(ans*po%m+now)%m;}x>>=1;now=(now*po%m+now)%m;po=po*po%m;}return ans;
}
signed main() {cin>>a>>b>>m;int g=gcd(a,b);cout<<answer(a,1)*answer(b/g,g)%m;//一共有b/g个循环,每次要乘10^greturn 0;
}
http://www.dtcms.com/wzjs/582371.html

相关文章:

  • 如皋电子商城网站建设跨境网站开发公司
  • 网站建设业务员的话术网络营销公司怎么找
  • wordpress建站网页无法运小而美企业网站建设
  • 建湖住房和城乡建设局网站线上推广员的工作内容
  • 什么项目必须走辽宁建设工程信息网seo上海推广公司
  • 发表评论的wordpress网站模板在线做ppt的网站
  • 建站费用明细文章发表有稿费的平台
  • 做彩票网站要什么接口我想找网站帮忙做宣传
  • 可以做彩字的网站个人网站模板王
  • 网站主办者什么意思免费建设工程信息网站
  • 珠宝玉器监测网站建设方案北京网站设计精选柚v米科技
  • 淘客做的领券网站php wordpress xmlrpc
  • 网站推广运营公司网站建设朱宁
  • 网站建设百科网页版微信二维码不出来
  • 天津小型网站建设外链购买
  • 网站优化包括对什么优化网站建设一般步骤是什么
  • 哈尔滨快速建站案例新乡市建设工程信息网
  • 网站建设合作流程科技设计网站
  • 做自己的程序设计在线测评网站网站常用配色
  • 模板网站建设报价wordpress 收集表单
  • 微官网和移动网站区别轻极企业wordpress主题
  • php网站开发app接口wordpress个人中心
  • 内网建设网站需要什么条件网站怎样做微信公众号
  • 我想做个网站成都网站设计制作公司
  • 自助式网站建设 济南甘肃崇信县门户网站
  • 手机网站生成工具百度怎么建立网站
  • 区块链网站开发价格重庆智能网站建设哪里好
  • 做网站如何赚流量钱佛山网站建设制作
  • 做网站需要学哪些软件门户网站制作建设
  • 集团网站制作公司电脑上怎么做网页