当前位置: 首页 > wzjs >正文

上海建设工程招投标网站wordpress 登陆访问

上海建设工程招投标网站,wordpress 登陆访问,移动互联网小程序开发,建站平台 在线提交表格功能学习笔记(24): 机器学习之数据预处理Pandas和转换成张量格式[2] 学习机器学习,需要学习如何预处理原始数据,这里用到pandas,将原始数据转换为张量格式的数据。 学习笔记(23): 机器学习之数据预处理Pandas和转换成张量格式[1]-CSDN博客 下面…

学习笔记(24): 机器学习之数据预处理Pandas和转换成张量格式[2]

学习机器学习,需要学习如何预处理原始数据,这里用到pandas,将原始数据转换为张量格式的数据。

学习笔记(23): 机器学习之数据预处理Pandas和转换成张量格式[1]-CSDN博客

下面介绍下:处理缺失值(删除法)

为什么要这样做?

这种处理缺失值的策略很实用,当某列的缺失值比例过高时,保留该列可能会对后续分析造成负面影响。删除缺失值最多的列可以避免在缺失值填充时引入过多噪声,提高数据质量。

原始数据:
   NumRoos Alley   Price
0      NaN  Pave  127500
1      2.0   NaN  106000
2      4.0   NaN  178100
3      NaN   NaN  140000

1、处理缺失值(删除法)

      “NaN”项代表缺失值。 为了处理缺失的数据,典型的方法包括插值法和删除法, 其中插值法用一个替代值弥补缺失值,而删除法则直接忽略缺失值。 在这里,我们将考虑删除法。

1.1、代码

# 处理缺失值
inputs, outputs = data.iloc[:, 0:2], data.iloc[:, 2]
# 转换 NumRoos 列为数值类型(将 'NA' 转为 NaN)
inputs['NumRoos'] = pd.to_numeric(inputs['NumRoos'],errors='coerce')# 计算每列的缺失值数量
miss_counts = inputs.isna().sum()
print("\n各列缺失值数量:")
print(miss_counts)# 找出缺失值最多的列
if not miss_counts.empty:max_miss = miss_counts.max()  # 计算最大缺失值数量,结果为3(Alley列有3个缺失值print(max_miss)clos_drop = miss_counts[miss_counts ==max_miss].index.tolist() #筛选出缺失值数量等于最大值的列,miss_counts == max_miss 返回布尔 Seriesinputs = inputs.drop(columns=clos_drop)  #删除筛选出的列print(f"\n已删除缺失值最多的列: {clos_drop}")# 用均值填充 NumRoos 列的缺失值
inputs['NumRoos'] = inputs['NumRoos'].fillna(inputs['NumRoos'].mean())print("\n处理后的数据:")
print(inputs)

代码解析如下

1. 数据分割:提取输入特征和输出标签
inputs, outputs = data.iloc[:, 0:2], data.iloc[:, 2]

inputs:提取数据的前两列(索引 0 和 1)作为特征(NumRoos和Alley)。
outputs:提取第三列(索引 2)作为目标变量(Price)。
2. 将NumRoos列转换为数值类型
inputs['NumRoos'] = pd.to_numeric(inputs['NumRoos'], errors='coerce')

pd.to_numeric(..., errors='coerce'):将字符串类型的数值转换为数字,无法转换的(如NA)会被转为NaN(缺失值)。
3. 计算每列的缺失值数量
miss_counts = inputs.isna().sum()
print("\n各列缺失值数量:")
print(miss_counts)
inputs.isna():返回一个布尔型 DataFrame,标记每个位置是否为缺失值。
.sum():统计每列的True(缺失值)数量。

#筛选出缺失值数量等于最大值的列

clos_drop = miss_counts[miss_counts == max_miss].index.tolist()

这行代码主要做了三件事:筛选、提取索引、转换为列表。

1、筛选操作 missing_counts[...]

     miss_counts == max_miss 返回布尔 Series
     miss_counts[...] 筛选出值为True的行(即Alley)。

# 结果:
# NumRoos    False
# Alley       True
# dtype: bool

2、.index 获取列名

筛选结果是一个新的 Series,我们需要它的索引(也就是列名)

# 结果:
# Index(['Alley'], dtype='object')

3、.tolist() 转换为列表

.index.tolist() 将列名转为列表 ['Alley']。

为什么要转换为列表?

你可能会问:为什么不直接用索引对象,而非要转成列表呢?这主要是为了兼容drop()方法。drop()方法的columns参数可以接受列名列表或索引对象,但列表更灵活,方便后续处理。

关键细节总结
1、缺失值处理策略:
优先删除缺失比例最高的列(Alley列缺失率 75%)。
对剩余列(NumRoos)用均值填充。
2、数据类型转换:
pd.to_numeric(..., errors='coerce') 是处理含缺失值的数值列的常用方法。
3、边缘情况处理:
当有多个列缺失值数量相同时(如两列均有 3 个缺失值),会同时删除这些列。
if not miss_counts.empty 确保无缺失值时不会报错。

# 用均值填充 NumRoos 列的缺失值

inputs['NumRoos'] = inputs['NumRoos'].fillna(inputs['NumRoos'].mean())

inputs['NumRoos'].mean():计算NumRoos列的均值(结果为 3.0,因为有效数值为 2 和 4)。
.fillna(...):将NumRoos列的缺失值(NaN)填充为均值 3.0。

1.2、执行结果

2、转换为张量格式

现在inputsoutputs中的所有条目都是数值类型,它们可以转换为张量格式。

2.1、代码

import torch
print("\n转换成张量数据:")
x = torch.tensor(inputs.to_numpy(dtype=float))
print(x)
y = torch.tensor(outputs.to_numpy(dtype=float))
print(y)

2.2、执行结果

  • pandas软件包是Python中常用的数据分析工具中,pandas可以与张量兼容。

  • pandas处理缺失的数据时,我们可根据情况选择用插值法和删除法。

http://www.dtcms.com/wzjs/572164.html

相关文章:

  • 湘潭公司做网站河南工程建设
  • 旅游网站建设的方法wordpress切换回老的编辑器
  • 国外房产中介网站上海网站建设 网站开发
  • 选服务好的网站建设公司微商广告推广
  • 广州网站建设公司怎么挑选想自学广告设计怎么学
  • 提供营销网站建设公司代注册公司要多少钱
  • 公司网站网站不备案室内设计网上接单
  • 建完网站怎样维护怎么让网站能被百度到
  • 发外链的网站排名职业做网站游戏的
  • 域名备案与网站不一致长宁集团网站建设
  • 加盟网站制作运营.net开发网站怎么样
  • 学校网站制作素材做网站的分辨率
  • 如何利用淘宝建设网站挣钱温州平台网站建设
  • 网站开发销售话术网站建设 招聘需求
  • 网站开发组合 所有组合郑州制作网站
  • 深圳手机网站建设哪家好wordpress这么写一个api
  • 有哪些可以做包装袋的网站洛阳哪里做网站
  • 做网站价位个人网站做支付宝收款
  • 专业建站公司报价北京信息网站建设
  • 网站ui设计报价单同步wordpress到微信
  • 网站导航设计原则成都房产信息查询官方网站
  • 百度快照怎么没有了南昌seo排名技术
  • 如何创建电子商务网站南京网站推广哪家便宜
  • 南昌网站建设报价单在建工程项目查询
  • 中国建设银行网站登录不了建设英文网站多少钱
  • 加油站网站建设常用网站推荐
  • 书店网站建设规划书中国网站用Cn域名
  • 嘉盛建设集团官方网站做一个信息发布网站要多少钱
  • 企业门户网站建设机构杭州有专业做网站小型服装厂吗
  • 重庆网络公司网站建设wordpress5.2火车头发布