当前位置: 首页 > wzjs >正文

网站上的定位怎么做厦门网站建设 php

网站上的定位怎么做,厦门网站建设 php,seo优化推广流程,wordpress分类打不开YOLOv8 在单片机上的部署方案 单片机资源(如内存、计算能力)有限,直接部署完整的 YOLOv8 模型并不现实。不过,我们可以通过模型量化、优化和使用轻量级框架来实现简化版的目标检测。下面为你介绍几种可行的方案: 方案…

在这里插入图片描述

YOLOv8 在单片机上的部署方案

单片机资源(如内存、计算能力)有限,直接部署完整的 YOLOv8 模型并不现实。不过,我们可以通过模型量化、优化和使用轻量级框架来实现简化版的目标检测。下面为你介绍几种可行的方案:

方案一:使用 TensorFlow Lite Micro + YOLOv8 简化模型

1. 模型转换与优化

首先在 PC 上对 YOLOv8 进行简化和量化:

import torch
from ultralytics import YOLO
import tensorflow as tf
from onnx_tf.backend import prepare# 加载 YOLOv8 模型
model = YOLO("yolov8n.pt")  # 使用 Nano 版本# 导出为 ONNX 格式
model.export(format="onnx", imgsz=(320, 320))  # 减小输入尺寸# 转换 ONNX 到 TensorFlow
import onnx
onnx_model = onnx.load("yolov8n.onnx")
tf_rep = prepare(onnx_model)
tf_rep.export_graph("yolov8n_tf")# 转换为 TensorFlow Lite 并应用量化
converter = tf.lite.TFLiteConverter.from_saved_model("yolov8n_tf")
converter.optimizations = [tf.lite.Optimize.DEFAULT]
tflite_quant_model = converter.convert()# 保存 TFLite 模型
with open("yolov8n_quant.tflite", "wb") as f:f.write(tflite_quant_model)
2. 在单片机上部署 TensorFlow Lite Micro

以 Arduino Nano 33 BLE Sense 为例:

#include "tensorflow/lite/micro/all_ops_resolver.h"
#include "tensorflow/lite/micro/micro_error_reporter.h"
#include "tensorflow/lite/micro/micro_interpreter.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "model_data.h"  // 包含量化后的 YOLOv8 模型// 定义输入输出张量
const int kInputTensorIndex = 0;
const int kOutputTensorIndex = 0;// 初始化错误报告器
tflite::MicroErrorReporter micro_error_reporter;
const tflite::ErrorReporter* error_reporter = &micro_error_reporter;// 初始化算子解析器
tflite::AllOpsResolver resolver;// 加载模型
const tflite::FlatBufferModel* model = tflite::FlatBufferModel::BuildFromBuffer(model_data, model_data_len);// 创建解释器
constexpr int tensor_arena_size = 136 * 1024;
uint8_t tensor_arena[tensor_arena_size];
tflite::SimpleTensorAllocator tensor_allocator(tensor_arena, tensor_arena_size);
tflite::MicroInterpreter interpreter(model, resolver, &tensor_allocator, error_reporter);// 分配张量
TfLiteStatus allocate_status = interpreter.AllocateTensors();
if (allocate_status != kTfLiteOk) {Serial.println("Failed to allocate tensors!");return;
}// 获取输入输出张量
TfLiteTensor* input_tensor = interpreter.input(kInputTensorIndex);
TfLiteTensor* output_tensor = interpreter.output(kOutputTensorIndex);// 图像预处理函数(示例)
void preprocess_image(uint8_t* image_data, float* input_data) {// 调整图像大小为模型输入尺寸 (320x320)// 归一化像素值到 [0, 1] 或 [-1, 1]// ...
}// 后处理函数(简化版 NMS)
void postprocess(float* output_data, int width, int height) {// 解析模型输出,提取边界框、类别和置信度// 应用非极大值抑制(NMS)// ...
}void setup() {Serial.begin(115200);// 初始化摄像头// ...
}void loop() {// 捕获图像uint8_t* image_data = capture_image();// 预处理图像preprocess_image(image_data, input_tensor->data.f);// 运行推理TfLiteStatus invoke_status = interpreter.Invoke();if (invoke_status != kTfLiteOk) {Serial.println("Failed to invoke interpreter!");return;}// 后处理结果postprocess(output_tensor->data.f, 320, 320);// 显示或发送结果// ...delay(100);
}

方案二:使用 TinyML 框架(如 NCNN)

NCNN 是专为移动设备优化的轻量级神经网络推理框架,非常适合单片机:

1. 模型转换

将 YOLOv8 转换为 NCNN 格式:

# 首先将 YOLOv8 导出为 ONNX
yolo export model=yolov8n.pt format=onnx imgsz=320# 使用 onnx2ncnn 工具转换为 NCNN 格式
onnx2ncnn yolov8n.onnx yolov8n.param yolov8n.bin# 优化模型
ncnnoptimize yolov8n.param yolov8n.bin yolov8n-opt.param yolov8n-opt.bin 1
2. 在单片机上集成 NCNN

以下是一个简化的 NCNN 集成示例:

#include "net.h"
#include "benchmark.h"
#include "mat.h"// 初始化网络
ncnn::Net yolov8;
yolov8.load_param("yolov8n-opt.param");
yolov8.load_model("yolov8n-opt.bin");// 目标检测函数
std::vector<Object> detect_yolov8(const cv::Mat& bgr, float prob_threshold = 0.25f, float nms_threshold = 0.45f)
{int img_w = bgr.cols;int img_h = bgr.rows;// 图像预处理ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR, bgr.cols, bgr.rows, 320, 320);// 归一化const float mean_vals[3] = {0.f, 0.f, 0.f};const float norm_vals[3] = {1/255.f, 1/255.f, 1/255.f};in.substract_mean_normalize(mean_vals, norm_vals);// 运行推理ncnn::Extractor ex = yolov8.create_extractor();ex.set_num_threads(2);ex.input("images", in);ncnn::Mat out;ex.extract("output", out);// 后处理std::vector<Object> objects;// ... 解析输出并应用 NMSreturn objects;
}void setup() {// 初始化串口和摄像头
}void loop() {// 捕获图像cv::Mat image = capture_image();// 检测目标std::vector<Object> objects = detect_yolov8(image);// 处理检测结果// ...delay(100);
}

方案三:使用 YOLO-NAS Tiny

YOLO-NAS 是一种较新的轻量级目标检测模型,性能优于 YOLOv5/YOLOv8 的 Nano 版本:

# 安装 super-gradients
pip install super-gradients# 导出 YOLO-NAS Tiny 为 ONNX
from super_gradients.training import models# 加载模型
model = models.get("yolo_nas_s", pretrained_weights="coco")# 导出为 ONNX
model.export("yolo_nas_s.onnx", input_shape=(3, 320, 320))# 然后按照上述方法将 ONNX 转换为适合单片机的格式

资源限制与优化建议

  1. 模型选择:优先选用 Nano 或 Tiny 版本的模型
  2. 输入尺寸:使用较小的输入尺寸(如 160×160 或 320×320)
  3. 量化:使用 8 位或 16 位量化,甚至二值化
  4. 层融合:利用框架的层融合功能减少计算量
  5. 算法简化:只检测关键类别,降低模型复杂度

对于资源极其有限的单片机(如 Arduino Uno),可能需要使用更轻量级的算法,如 Tiny YOLO 或专门为 MCU 设计的目标检测模型。

常见问题及解决办法

CUDA 相关问题:

要保证你的 GPU 驱动版本与 CUDA 版本兼容
可以使用 nvidia-smi 命令查看 GPU 信息

显示问题:

如果你在服务器上运行,可能会遇到无法显示图像的问题,这时可以加上 save=True 参数将结果保存下来。

依赖冲突问题:

可以尝试在全新的虚拟环境中重新安装所有依赖。
如果在部署过程中遇到特定问题,请提供详细的错误信息,以便进一步排查。

优化建议与注意事项

模型压缩策略:

1、使用 YOLOv8 Nano 或定制更小的模型
2、降低输入分辨率(128×128 或 160×160)
3、应用 INT8 或二值化量化
4、裁剪不重要的层

硬件选择指南:

1、普通任务:STM32H7 系列(带 DSP/FPU)
2、高性能需求:Kendryte K210、Nordic nRF9160
3、预算充足:Raspberry Pi Zero 2W + Edge TPU

实际性能参考:

1、STM32H747:约 0.2 FPS(160×160 输入)
2、Kendryte K210:约 5 FPS(160×160 输入)
3、Raspberry Pi Zero 2W + Edge TPU:约 15 FPS(320×320 输入)

对于资源极其有限的单片机(如 Arduino Uno),建议仅处理预处理任务(如图像缩放),并将数据发送到外部设备进行推理。

http://www.dtcms.com/wzjs/568545.html

相关文章:

  • 大型网站服务器配置wordpress商品导出淘宝
  • 国外 网站 模板ps制作素材图片
  • 苏州建站网站模板wordpress创建搜索框
  • 购物网站开发视频教程微信团购群网站怎样做
  • 餐饮招商加盟网站建设深圳昊客网络推广
  • 佛山网站制作的公司网页设计与网站开发什么区别
  • 网站重大建设项目公开发布制度晋江规划建设局网站
  • 网站建设中怎么添加源码注册的空间网站吗
  • 网站怎么上传模板wordpress怎么做404页面
  • 网站优化建设绵阳跨境支付互联互通
  • 如何在百度建设企业网站团建拓展网站建设需求分析
  • 做网站怎么切图两学一做知识竞赛网站
  • php 网站 手机版双轨网站开发
  • 一个人可以做网站泰安新闻视频在线
  • 没有网站怎么做链接视频教程花都电子商务网站建设
  • 综合网站推广主机托管一年多少钱
  • vs2015是网站开发图片广告设计软件
  • 怎么做视频网站教程中国画廊企业网站模板
  • 自己做的公司网站百度搜不到找人帮你做ppt的网站吗
  • 网站怎么做邮箱网站解决方案设计
  • 织梦网站采集侠怎么做精兴装修公司怎么样
  • 公司内部网站如何备案搜搜
  • 做试卷的网站德阳市网站建设
  • 电商网站流程小学网站建设情况说明
  • 优秀网站作品河北雄安建设投资集团网站
  • 江门模板建站系统开封网站建设流程与步骤
  • 南宁网站设计建设连云港做网站建设
  • 要做一个网站需要准备什么仙居做网站
  • 17网站一起做网店普网站案例
  • 凡科建站是放在哪个服务器上邢台市行政区划图