当前位置: 首页 > wzjs >正文

东莞网站优化哪个公司好保定做公司网站的

东莞网站优化哪个公司好,保定做公司网站的,80s网站建设工作室,深圳沙井网站建设1. 序列型DP(Sequence DP) ✅ 应用场景 单个或多个序列(数组/字符串),求最优子结构。 常见问题:最长递增子序列、最长公共子序列、回文子序列。 🧠 套路总结 单序列:dp[i] max(…

1. 序列型DP(Sequence DP)

✅ 应用场景
  • 单个或多个序列(数组/字符串),求最优子结构。

  • 常见问题:最长递增子序列、最长公共子序列、回文子序列。

🧠 套路总结
  • 单序列:dp[i] = max(dp[j]) + 1 (j < i 且 nums[j] < nums[i])

  • 双序列:dp[i][j] = max(dp[i-1][j], dp[i][j-1], dp[i-1][j-1]+1) 依赖匹配关系

🧪 代表题目
1.1 最长递增/最长递减子序列
  • 题目举例

    • LeetCode 300. Longest Increasing Subsequence

    • LeetCode 674. Longest Continuous Increasing Subsequence

    • LeetCode 646. Maximum Length of Pair Chain

    • LeetCode 376. Wiggle Subsequence

1.2 最长公共子序列/子串
  • 题目举例

    • LeetCode 1143. Longest Common Subsequence

    • LeetCode 1092. Shortest Common Supersequence

    • LeetCode 718. Maximum Length of Repeated Subarray

1.3 回文子序列/子串
  • 题目举例

    • LeetCode 516. Longest Palindromic Subsequence

    • LeetCode 5. Longest Palindromic Substring

    • LeetCode 647. Palindromic Substrings

1.4 编辑距离和相似度
  • 题目举例

    • LeetCode 72. Edit Distance

    • LeetCode 583. Delete Operation for Two Strings

🧩 Go 模板
for i := 1; i < n; i++ {for j := 0; j < i; j++ {if condition {dp[i] = max(dp[i], dp[j] + val)}}
}

2. 背包型DP(Knapsack DP)

✅ 应用场景
  • 有物品、价值、容量的选择问题。

  • 子类型:0/1背包、完全背包、多重背包。

🧠 套路总结
// 0/1 背包(从大到小)
for i := 0; i < n; i++ {for j := cap; j >= weight[i]; j-- {dp[j] = max(dp[j], dp[j-weight[i]]+value[i])}
}// 完全背包(从小到大)
for i := 0; i < n; i++ {for j := weight[i]; j <= cap; j++ {dp[j] = max(dp[j], dp[j-weight[i]]+value[i])}
}
🧪 代表题目
2.1 0/1背包问题
  • 题目举例

    • LeetCode 416. Partition Equal Subset Sum

    • LeetCode 1049. Last Stone Weight II

    • LeetCode 474. Ones and Zeroes

2.2 完全背包问题
  • 题目举例

    • LeetCode 518. Coin Change II

    • LeetCode 322. Coin Change

    • LeetCode 139. Word Break

2.3 多重背包、分组背包等变形
  • 题目举例

    • LeetCode 698. Partition to K Equal Sum Subsets

    • LeetCode 474. Ones and Zeroes (也包含组背包思想)


3. 区间型DP(Interval DP)

✅ 应用场景
  • 合并区间、回文判断,求最优合并方案。

  • 状态:dp[i][j]表示区间[i,j]的最优值。

🧠 套路总结
for length := 2; length <= n; length++ {for i := 0; i <= n-length; i++ {j := i + length - 1for k := i; k < j; k++ {dp[i][j] = min(dp[i][j], dp[i][k]+dp[k+1][j]+cost[i][j])}}
}
🧪 代表题目
3.1 合并区间与括号相关
  • 题目举例

    • LeetCode 312. Burst Balloons

    • LeetCode 1000. Minimum Cost to Merge Stones

    • LeetCode 544. Output Contest Matches

3.2 回文串判定与划分
  • 题目举例

    • LeetCode 5. Longest Palindromic Substring

    • LeetCode 132. Palindrome Partitioning II

    • LeetCode 131. Palindrome Partitioning


4. 状态压缩DP(Bitmask DP)

✅ 应用场景
  • 元素子集、排列组合、旅行商问题等。

  • 状态数 ≈ 2^n(n ≤ 20)

🧠 套路总结
for mask := 0; mask < (1<<n); mask++ {for i := 0; i < n; i++ {if (mask&(1<<i)) == 0 {newMask := mask | (1 << i)dp[newMask] = min(dp[newMask], dp[mask]+cost[prev][i])}}
}
🧪 代表题目
4.1 旅行商(TSP)
  • 题目举例

    • LeetCode 847. Shortest Path Visiting All Nodes

    • LeetCode 1129. Shortest Path with Alternating Colors

4.2 子集划分和集合覆盖
  • 题目举例

    • LeetCode 698. Partition to K Equal Sum Subsets

    • LeetCode 1269. Number of Ways to Stay in the Same Place After Some Steps


5. 树形DP(Tree DP)

✅ 应用场景
  • 状态在树上自底向上传递,依赖子树结构。

🧠 套路总结
func dfs(node *TreeNode) (rob, notRob int) {if node == nil {return 0, 0}leftRob, leftNot := dfs(node.Left)rightRob, rightNot := dfs(node.Right)rob = node.Val + leftNot + rightNotnotRob = max(leftRob, leftNot) + max(rightRob, rightNot)return
}
🧪 代表题目
  • 5.1 树上选点问题
  • 题目举例

    • LeetCode 337. House Robber III

    • LeetCode 87. Scramble String (也用树形DP思想)

  • 题目举例

    • LeetCode 124. Binary Tree Maximum Path Sum

    • LeetCode 968. Binary Tree Cameras

  • 5.2 树上路径问题

6. 计数型DP(Counting DP)

✅ 应用场景
  • 统计路径、方案数、组合数。

🧠 套路总结
for i := 0; i < m; i++ {for j := 0; j < n; j++ {if i > 0 {dp[i][j] += dp[i-1][j]}if j > 0 {dp[i][j] += dp[i][j-1]}}
}
🧪 代表题目
  • 6.1 路径计数
  • 题目举例

    • LeetCode 62. Unique Paths

    • LeetCode 63. Unique Paths II

  • 6.2 组合计数
  • 题目举例

    • LeetCode 70. Climbing Stairs

    • LeetCode 639. Decode Ways II

  • 题目举例

    • LeetCode 377. Combination Sum IV

  • 6.3 排列计数
    • LeetCode 377. Combination Sum IV

7. 概率型DP(Probability DP)

✅ 应用场景
  • 求概率、期望值。

🧠 套路总结
for k := 1; k <= K; k++ {for i := 0; i < N; i++ {for j := 0; j < N; j++ {for _, dir := range dirs {ni, nj := i+dir[0], j+dir[1]if inBounds(ni, nj) {dp[k][i][j] += dp[k-1][ni][nj] / 8.0}}}}
}
🧪 代表题目
7.1 马尔可夫过程概率计算
  • 题目举例

    • LeetCode 688. Knight Probability in Chessboard

    • LeetCode 837. New 21 Game

7.2 期望值计算
  • 题目举例

    • LeetCode 470. Implement Rand10() Using Rand7()

✅ 8. 子串 / 子序列问题

多用于字符串匹配、编辑距离等

🔹 场景:

  • 最长公共子序列、子串

  • 编辑距离

  • 回文子序列

🔸 代表题目:

题号名称
1143Longest Common Subsequence
72Edit Distance
5Longest Palindromic Substring

📌 模板结构:

if s[i] == t[j] {dp[i][j] = dp[i-1][j-1] + 1
} else {dp[i][j] = max(dp[i-1][j], dp[i][j-1])
}

http://www.dtcms.com/wzjs/568077.html

相关文章:

  • 您网站建设开封搜索引擎优化
  • 网站备案网站负责人wordpress 图片热点
  • 湖北网站建设的释义西方设计网站
  • 南阳+网站建设上海企业网站开发
  • 昆山网站建设工作室渠县网站建设
  • 十大房产网站排行榜图书网站建设的主要工作流程
  • 武邑县建设局网站seo排名软件怎么做
  • 齐齐哈尔住房和城乡建设局网站wordpress企业仿站
  • 网站正在备案中织梦商城模板
  • 360云盘做服务器建设网站网站打开是目录结构图
  • 手机网站出现广告绍兴 网站制作
  • 打开网站 输入内容存在危险字符怎么制作网站封面
  • 哪些网站有二维码毕业设计网页制作网站建设
  • 国外服务器地址ip广州网站优化软件
  • 网站的会员认证怎么做太原网站建设pnjfw
  • 网站优化效果怎么样网站运营管理报告总结
  • 网站开发应财务如何记账网站建设框架程序
  • 网站pv怎么统计国税网站建设现状
  • 大庆开发网站公司王店镇建设中学网站
  • 网站目录有什么意义建立网站怎么赚钱
  • 网站推广的公司站长网站查询
  • 传奇手游大型网站服装微商城网站建设
  • 一级a做爰片不卡的网站梅西网页设计作业
  • 中国建设行业网站云南网络公司排名
  • 白色网站配色大数据精准获客软件
  • 上海网站开发培训03173软件开发工具
  • 网站开发上线流程响应式模板网站建设
  • 为什么网站建设wordpress发不了邮件
  • 网站制作尺寸金融软件开发公司前十
  • 佛山网站seoWordPress国外主机