当前位置: 首页 > wzjs >正文

陕西网站制作电话一个人做网站 没有人写文章怎么办

陕西网站制作电话,一个人做网站 没有人写文章怎么办,云南大永高速公路建设指挥部网站,敦煌网站做外贸怎样Day 36 训练 使用Python和PyTorch构建简单的神经网络:信用违约预测项目概述数据预处理导入所需库数据加载和预处理特征工程 准备数据构建神经网络模型定义损失函数和优化器训练模型可视化训练过程 使用Python和PyTorch构建简单的神经网络:信用违约预测 …

Day 36 训练

  • 使用Python和PyTorch构建简单的神经网络:信用违约预测
    • 项目概述
    • 数据预处理
      • 导入所需库
      • 数据加载和预处理
      • 特征工程
    • 准备数据
    • 构建神经网络模型
    • 定义损失函数和优化器
    • 训练模型
    • 可视化训练过程


使用Python和PyTorch构建简单的神经网络:信用违约预测

在本文中,我将分享如何使用Python和PyTorch构建一个简单的神经网络模型,用于预测信用违约。这个过程包括数据预处理、特征工程、模型构建、训练和评估等多个步骤。

项目概述

本项目的目标是利用给定的数据集,训练一个神经网络模型,以预测个人是否会发生信用违约。数据集包含多种特征,如年度收入、信用评分、当前贷款金额等,以及目标变量“Credit Default”(信用违约)。

数据预处理

导入所需库

首先,我导入了以下库:

  • pandas:用于数据处理和分析
  • numpy:用于数值计算
  • sklearn:用于数据预处理和模型评估
  • matplotlib:用于数据可视化
  • torch:用于构建和训练神经网络
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.compose import ColumnTransformer
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import TensorDataset, DataLoader

数据加载和预处理

我加载了数据集,并进行了缺失值的填充。对于数值型特征,我使用中位数填充缺失值;对于分类特征,我使用众数填充。

df = pd.read_csv('d:/python打卡/python60-days-challenge/data.csv')
for col in df.columns:if df[col].isnull().any():if df[col].dtype in ['int64', 'float64']:fill_value = df[col].median()else:fill_value = df[col].mode()[0]df[col].fillna(fill_value, inplace=True)

特征工程

接下来,我进行了特征工程。我将数据集分为数值型特征和分类特征,并分别应用标准化和独热编码。

categorical_features = ['Home Ownership', 'Purpose', 'Term']
numeric_features = ['Annual Income', 'Tax Liens', 'Number of Open Accounts','Years of Credit History', 'Maximum Open Credit','Number of Credit Problems', 'Months since last delinquent','Bankruptcies', 'Current Loan Amount', 'Current Credit Balance','Monthly Debt', 'Credit Score']
preprocessor = ColumnTransformer(transformers=[('num', StandardScaler(), numeric_features),('cat', OneHotEncoder(handle_unknown='ignore'), categorical_features)])

准备数据

我将数据集分为训练集和测试集,并将数据转换为PyTorch张量,以便用于模型训练。

X = df.drop('Credit Default', axis=1)
y = df['Credit Default']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)X_processed = preprocessor.fit_transform(X_train)
X_test_processed = preprocessor.transform(X_test)X_train_tensor = torch.tensor(X_processed, dtype=torch.float32)
y_train_tensor = torch.tensor(y_train.values, dtype=torch.float32).view(-1, 1)
X_test_tensor = torch.tensor(X_test_processed, dtype=torch.float32)
y_test_tensor = torch.tensor(y_test.values, dtype=torch.float32).view(-1, 1)train_dataset = TensorDataset(X_train_tensor, y_train_tensor)
test_dataset = TensorDataset(X_test_tensor, y_test_tensor)train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=32)

构建神经网络模型

我定义了一个简单的多层感知机(MLP)模型,包含一个输入层、一个隐藏层和一个输出层。

class MLP(nn.Module):def __init__(self, input_dim):super(MLP, self).__init__()self.fc1 = nn.Linear(input_dim, 10)self.relu = nn.ReLU()self.fc2 = nn.Linear(10, 1)def forward(self, x):out = self.fc1(x)out = self.relu(out)out = self.fc2(out)return outinput_dim = X_train_tensor.shape[1]
model = MLP(input_dim).to(device)

定义损失函数和优化器

我选择了二元交叉熵损失函数(BCEWithLogitsLoss)和Adam优化器。

criterion = nn.BCEWithLogitsLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

训练模型

我训练了模型50个Epoch,并记录了训练和验证的损失和准确率。

train_losses = []
val_losses = []
train_accs = []
val_accs = []for epoch in range(50):model.train()running_loss = 0.0correct = 0total = 0for inputs, labels in train_loader:inputs, labels = inputs.to(device), labels.to(device)optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()predicted = (outputs > 0.5).float()total += labels.size(0)correct += (predicted == labels).sum().item()train_loss = running_loss / len(train_loader)train_acc = correct / totaltrain_losses.append(train_loss)train_accs.append(train_acc)model.eval()val_loss = 0.0correct = 0total = 0with torch.no_grad():for inputs, labels in test_loader:inputs, labels = inputs.to(device), labels.to(device)outputs = model(inputs)loss = criterion(outputs, labels)val_loss += loss.item()predicted = (outputs > 0.5).float()total += labels.size(0)correct += (predicted == labels).sum().item()val_loss = val_loss / len(test_loader)val_acc = correct / totalval_losses.append(val_loss)val_accs.append(val_acc)print(f'Epoch {epoch+1}: Train Loss: {train_loss:.4f}, Val Loss: {val_loss:.4f}, 'f'Train Acc: {train_acc:.4f}, Val Acc: {val_acc:.4f}')

可视化训练过程

最后,我绘制了训练和验证的准确率和损失曲线,以评估模型的性能。

plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.plot(train_accs, label='Train Accuracy')
plt.plot(val_accs, label='Val Accuracy')
plt.title('Model Accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend()plt.subplot(1, 2, 2)
plt.plot(train_losses, label='Train Loss')
plt.plot(val_losses, label='Val Loss')
plt.title('Model Loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend()plt.tight_layout()
plt.show()

浙大疏锦行

http://www.dtcms.com/wzjs/565019.html

相关文章:

  • 结合七牛云做视频网站合肥网站备案
  • ios移动网站开发详解wordpress文章版权声明
  • 网站备案后打不开肇庆百度快速排名
  • 自己做网站多少钱wordpress list
  • 做自媒体搬运文章的网站wordpress主题导入Demo
  • 温州网站建设制作公司培训会网站建设
  • 惠东东莞网站建设网站html模板下载
  • 网站建设入门教程视频一起生活小程序怎么注册
  • 网站维护费用计入什么科目学校网站源码php
  • 网站开发与建设的原则步步高网站建设报告
  • 太原网站建设报价网站标签设计
  • 鲤城区建设局网站网站建设备案费用
  • 网站可信认证必做免费招聘网站招聘
  • 世界上有一个wordpress站点wordpress论坛样式
  • 网站域名的意思做二手车网站需要什么手续
  • 中国做网站公司湘潭网站制作
  • 购买友情链接网站重庆建网站企业有哪些
  • 内蒙古网站开发公司wordpress ftp
  • 网站为什么要seo?wordpress数组
  • 上上佳食品 网站建设服装手机商城网站建设
  • 服装设计网站有哪些如何免费网站建设
  • 单品商城网站源码办公室装饰设计
  • 做网站赚钱有哪些途径专业网站建设加盟合作
  • 网站开发详细设计长沙网站推广和优化
  • 橙色网站后台模板wordpress 不同页面不同侧边栏
  • 盐城市亭湖区城乡建设局网站做电影网站挣钱
  • 狮山网站制作wordpress添加pdf
  • 乐陵建设网站城市建设和房屋管理部门网站
  • 马云先做那个网站的起家的seoul是韩国哪个城市
  • 上海高端网站设计公司价格渭南做网站的