当前位置: 首页 > wzjs >正文

湖州网站建设湖州手机购物平台

湖州网站建设湖州,手机购物平台,天空影院手机免费观看在线,免费网站建设网站推广在第3章讨论过的并行归约问题 5.3.1 使用共享内存进行并行归约 reduceGmem – 使用全局内存作为基准 reduceSmem – 使用共享内存 #include <cuda_runtime.h> #include <stdio.h> #include "../common/common.h" #include <iostream>#define DIM…

在第3章讨论过的并行归约问题

5.3.1 使用共享内存进行并行归约
reduceGmem – 使用全局内存作为基准
reduceSmem – 使用共享内存

#include <cuda_runtime.h>
#include <stdio.h>
#include "../common/common.h"
#include <iostream>#define DIM 128int recursiveReduce(int *data, int const size){if (size == 1) return data[0];int const stride = size /2;for (int i = 0; i < stride; i ++){data[i] += data[i + stride];}return recursiveReduce( data, stride);
}__global__ void warmup( int *g_idata, int *g_odata, unsigned int n){unsigned int tid  = threadIdx.x;int *idata = g_idata + blockIdx.x * blockDim.x;unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;if (idx >= n) return;if (blockDim.x >= 1024 &&  tid < 512) idata[tid] += idata[tid+ 512];__syncthreads();if (blockDim.x >= 512 &&  tid < 256) idata[tid] += idata[tid+ 256];__syncthreads();if (blockDim.x >= 256 &&  tid < 128) idata[tid] += idata[tid+ 128];__syncthreads();if (blockDim.x >= 128 &&  tid < 64) idata[tid] += idata[tid+ 64];__syncthreads();if (tid < 32){volatile int *vmem  = idata;vmem[tid] += vmem[tid + 32];vmem[tid] += vmem[tid + 16];vmem[tid] += vmem[tid +  8];vmem[tid] += vmem[tid +  4];vmem[tid] += vmem[tid +  2];vmem[tid] += vmem[tid +  1];}if  (tid == 0){ g_odata[blockIdx.x] = idata[0];}
}__global__ void reduceGmem( int *g_idata, int *g_odata, unsigned int n){unsigned int tid  = threadIdx.x;int *idata = g_idata + blockIdx.x * blockDim.x;unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;if (idx >= n) return;if (blockDim.x >= 1024 &&  tid < 512) idata[tid] += idata[tid+ 512];__syncthreads();if (blockDim.x >= 512 &&  tid < 256) idata[tid] += idata[tid+ 256];__syncthreads();if (blockDim.x >= 256 &&  tid < 128) idata[tid] += idata[tid+ 128];__syncthreads();if (blockDim.x >= 128 &&  tid < 64) idata[tid] += idata[tid+ 64];__syncthreads();if (tid < 32){volatile int *vmem  = idata;vmem[tid] += vmem[tid + 32];vmem[tid] += vmem[tid + 16];vmem[tid] += vmem[tid +  8];vmem[tid] += vmem[tid +  4];vmem[tid] += vmem[tid +  2];vmem[tid] += vmem[tid +  1];}if  (tid == 0){ g_odata[blockIdx.x] = idata[0];}
}__global__ void reduceSmem(int *g_idata, int *g_odata, unsigned int n){__shared__ int smem[DIM];unsigned int tid  = threadIdx.x;// convert global data pointer to local pointerint *idata = g_idata + blockIdx.x * blockDim.x;unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;if (idx >= n) return;//set to smem by each threadssmem[tid] = idata[tid];__syncthreads();if (blockDim.x >= 1024 &&  tid < 512) smem[tid] += smem[tid+ 512];__syncthreads();if (blockDim.x >= 512 &&  tid < 256) smem[tid] += smem[tid+ 256];__syncthreads();if (blockDim.x >= 256 &&  tid < 128) smem[tid] += smem[tid+ 128];__syncthreads();if (blockDim.x >= 128 &&  tid < 64) smem[tid] += smem[tid+ 64];__syncthreads();if (tid < 32){volatile int *vsmem  = smem;vsmem[tid] += vsmem[tid + 32];vsmem[tid] += vsmem[tid + 16];vsmem[tid] += vsmem[tid +  8];vsmem[tid] += vsmem[tid +  4];vsmem[tid] += vsmem[tid +  2];vsmem[tid] += vsmem[tid +  1];}if  (tid == 0){ g_odata[blockIdx.x] = smem[0];}
}int main(int argc , char **argv)
{printf("%s starting\n", argv[0]);int dev = 0;cudaDeviceProp deviceprop;CHECK(cudaGetDeviceProperties(&deviceprop,dev));printf("Using Device %d : %s\n", dev, deviceprop.name);int size = 1 << 24;int blocksize = 512;if (argc > 1){blocksize = atoi(argv[1]);}dim3 block(DIM, 1);  // 1ddim3 grid ((size + block.x - 1) / block.x, 1);size_t nBytes = size  * sizeof(int);int * h_idata = (int*) malloc(nBytes);int * h_odata = (int*) malloc( grid.x * sizeof(int));  //you duoshao ge blockint * temp = (int*) malloc(nBytes);//initial the arrayfor (int i = 0 ; i < size;i++){h_idata[i] = (int)(rand() & 0xff);}int sum = 0;for (int i = 0 ; i < size;i++){sum += h_idata[i];}printf("sum value is : %d\n", sum);memcpy(temp, h_idata, nBytes);int gpu_sum = 0;int *d_idata = NULL;int *d_odata = NULL;cudaMalloc((void**)&d_idata, nBytes);cudaMalloc((void**)&d_odata, grid.x * sizeof(int));//cpu sumTimer timer;timer.start();int cpu_sum = recursiveReduce(temp, size);timer.stop();float elapsedTime = timer.elapsedms();printf("cpu reduce time: %f,  sum: %d\n", elapsedTime, cpu_sum);//gpu sumcudaMemcpy(d_idata, h_idata, nBytes, cudaMemcpyHostToDevice);cudaDeviceSynchronize();timer.start();warmup<<<grid.x, block>>>(d_idata, d_odata, size);cudaDeviceSynchronize(); timer.stop();float elapsedTime1 = timer.elapsedms();cudaMemcpy(h_odata, d_odata, grid.x * sizeof(int),cudaMemcpyDeviceToHost);gpu_sum = 0;for (int i = 0; i < grid.x; i ++){gpu_sum += h_odata[i];}printf("warm up reduce time: %f,  sum: %d\n", elapsedTime1, gpu_sum);//gpu sumcudaMemcpy(d_idata, h_idata, nBytes, cudaMemcpyHostToDevice);cudaDeviceSynchronize();timer.start();reduceGmem<<<grid.x, block>>>(d_idata, d_odata, size);cudaDeviceSynchronize(); timer.stop();elapsedTime1 = timer.elapsedms();cudaMemcpy(h_odata, d_odata, grid.x * sizeof(int),cudaMemcpyDeviceToHost);gpu_sum = 0;for (int i = 0; i < grid.x ; i ++){gpu_sum += h_odata[i];}printf("reduceGmem gpu reduce time: %f,  sum: %d, gird ,block (%d %d)\n", elapsedTime1, gpu_sum, grid.x , block.x);//gpu sumcudaMemcpy(d_idata, h_idata, nBytes, cudaMemcpyHostToDevice);cudaDeviceSynchronize();timer.start();reduceSmem<<<grid.x, block>>>(d_idata, d_odata, size);cudaDeviceSynchronize(); timer.stop();elapsedTime1 = timer.elapsedms();cudaMemcpy(h_odata, d_odata, grid.x * sizeof(int),cudaMemcpyDeviceToHost);gpu_sum = 0;for (int i = 0; i < grid.x ; i ++){gpu_sum += h_odata[i];}printf("reduceSmem gpu reduce time: %f,  sum: %d, gird ,block (%d %d)\n", elapsedTime1, gpu_sum, grid.x , block.x);cudaFree(d_idata);cudaFree(d_odata);cudaDeviceReset();free(h_idata);free(h_odata);free(temp);return 0;
}

通过nsys profile 程序:
nsys profile --stats=true reduce.exe
输出:

Time (%)  Total Time (ns)  Instances  Avg (ns)  Med (ns)  Min (ns)  Max (ns)  StdDev (ns)                   Name--------  ---------------  ---------  --------  --------  --------  --------  -----------  --------------------------------------39.8           134721          1  134721.0  134721.0    134721    134721          0.0  warmup(int *, int *, unsigned int)38.0           128385          1  128385.0  128385.0    128385    128385          0.0  reduceGmem(int *, int *, unsigned int)22.2            75040          1   75040.0   75040.0     75040     75040          0.0  reduceSmem(int *, int *, unsigned int)

5.3.2 展开

展开的核函数以及调用:


__global__ void reduceSmemUnroll(int *g_idata, int *g_odata, unsigned int n){__shared__ int smem[DIM];unsigned int tid  = threadIdx.x;// convert global data pointer to local pointerint *idata = g_idata + blockIdx.x * blockDim.x;unsigned int idx = blockIdx.x * blockDim.x * 4 + threadIdx.x;//unrolling 4 blocksint tmpSum = 0;if (idx + 3 * blockDim.x <= n){int a1 = g_idata[idx];int a2 = g_idata[idx + blockDim.x];int a3 = g_idata[idx + 2 * blockDim.x];int a4 = g_idata[idx + 3 * blockDim.x];tmpSum = a1 + a2 + a3 + a4;}//set to smem by each threadssmem[tid] = tmpSum;__syncthreads();if (blockDim.x >= 1024 &&  tid < 512) smem[tid] += smem[tid+ 512];__syncthreads();if (blockDim.x >= 512 &&  tid < 256) smem[tid] += smem[tid+ 256];__syncthreads();if (blockDim.x >= 256 &&  tid < 128) smem[tid] += smem[tid+ 128];__syncthreads();if (blockDim.x >= 128 &&  tid < 64) smem[tid] += smem[tid+ 64];__syncthreads();if (tid < 32){volatile int *vsmem  = smem;vsmem[tid] += vsmem[tid + 32];vsmem[tid] += vsmem[tid + 16];vsmem[tid] += vsmem[tid +  8];vsmem[tid] += vsmem[tid +  4];vsmem[tid] += vsmem[tid +  2];vsmem[tid] += vsmem[tid +  1];}if  (tid == 0){ g_odata[blockIdx.x] = smem[0];}
}// 调用
cudaMemcpy(d_idata, h_idata, nBytes, cudaMemcpyHostToDevice);cudaDeviceSynchronize();timer.start();reduceSmemUnroll<<<grid.x /4 , block>>>(d_idata, d_odata, size);cudaDeviceSynchronize(); timer.stop();elapsedTime1 = timer.elapsedms();cudaMemcpy(h_odata, d_odata, grid.x /4 * sizeof(int),cudaMemcpyDeviceToHost);gpu_sum = 0;for (int i = 0; i < grid.x / 4 ; i ++){gpu_sum += h_odata[i];}printf("reduceSmemUnroll gpu reduce time: %f,  sum: %d, gird ,block (%d %d)\n", elapsedTime1, gpu_sum, grid.x / 4, block.x);

nsys输出:

Time (%)  Total Time (ns)  Instances  Avg (ns)  Med (ns)  Min (ns)  Max (ns)  StdDev (ns)                      Name--------  ---------------  ---------  --------  --------  --------  --------  -----------  --------------------------------------------34.6           135329          1  135329.0  135329.0    135329    135329          0.0  warmup(int *, int *, unsigned int)33.0           129056          1  129056.0  129056.0    129056    129056          0.0  reduceGmem(int *, int *, unsigned int)      25.6            99968          1   99968.0   99968.0     99968     99968          0.0  reduceSmem(int *, int *, unsigned int)6.7            26335          1   26335.0   26335.0     26335     26335          0.0  reduceSmemUnroll(int *, int *, unsigned int)

5.3.3 动态共享内存

//动态声明
extern __shared__ int smem[];//调用
reduceSmemUnrollDyn<<<grid.x /4 , block, DIM * sizeof(int)>>>(d_idata, d_odata, size);

发现用动态分配共享内存实现的核函数和用静态分配共享内存实现的核函数之间没有显著的差异。

Time (%)  Total Time (ns)  Instances  Avg (ns)  Med (ns)  Min (ns)  Max (ns)  StdDev (ns)                       Name--------  ---------------  ---------  --------  --------  --------  --------  -----------  -----------------------------------------------35.2           135009          1  135009.0  135009.0    135009    135009          0.0  warmup(int *, int *, unsigned int)33.5           128576          1  128576.0  128576.0    128576    128576          0.0  reduceGmem(int *, int *, unsigned int)19.5            74753          1   74753.0   74753.0     74753     74753          0.0  reduceSmem(int *, int *, unsigned int)5.9            22752          1   22752.0   22752.0     22752     22752          0.0  reduceSmemUnroll(int *, int *, unsigned int)5.9            22752          1   22752.0   22752.0     22752     22752          0.0  reduceSmemUnrollDyn(int *, int *, unsigned int)
http://www.dtcms.com/wzjs/564824.html

相关文章:

  • 400靓号手机网站建设学校网站三合一建设方案
  • 手机app 网站泰安程序开发
  • 网站建设得多少钱专业画册设计
  • 建网站 可以看到访客吗wordpress js加载慢
  • 云南省建设厅网站查询个人域名可以做KTV网站吗
  • 网站底部的备案信息eclipse做的网站
  • 做淘宝代码的网站网站免费进入窗口软件有哪些
  • 做网站文章要一篇一篇的写吗互联网信息服务平台
  • 买东西网站有哪些怎样做公司自己的官方网站
  • wordpress 怎么传网站安康市电梯公司
  • 华升建设集团有限公司网站自己在线制作logo免费app
  • 自己做网站要花钱吗wordpress更换主题内容无法显示
  • php网站开发需要学什么软件wp怎么打开wordpress
  • 做网页网站电商网站项目经验介绍
  • 书画网站的建设目标门户网站欣赏
  • 那个公司可以做网站wordpress底部版权信息修改
  • 营销网站的概念在线二维码制作
  • 湛江建设网站做网站手机适配需要加价吗
  • 好用的ppt模板网站免费内网是怎么做网站的
  • 手机网站微信网站开发python的基本语法
  • 优化网站推广天眼查询企业信息官网在线
  • 中国建设部官方网站绿色建筑app界面设计模板免费
  • 企业网站建设457宜昌皓月建设工程有限公司网站
  • 灯具公司网站模板wordpress的数据库
  • 威海网站建设夜蝶直播app
  • 做水处理药剂的公司网站iis打开网站变成下载
  • 网站怎么做微博认证优质的低价网站建设
  • 企业网站建设的思路软件开发工程师机构
  • 好的app设计网站自己做网站可以上传软件
  • 网站建设制作品牌公司高校校园网站建设项目的要求