当前位置: 首页 > wzjs >正文

网站建设千套素材手机程序开发

网站建设千套素材,手机程序开发,鄂尔多斯网站制作 建设,在线视频这里写自定义目录标题 动机代码1,这个代码是有问题的代码2,这个代码是我调试代码。拆分代码,最后找到问题所在,这个代码是正确的代码3。本以为找到问题所在之后,又稍微修改了下代码 2,这个代码还是没问题的…

这里写自定义目录标题

  • 动机
    • 代码1,这个代码是有问题的
    • 代码2,这个代码是我调试代码。拆分代码,最后找到问题所在,这个代码是正确的
    • 代码3。本以为找到问题所在之后,又稍微修改了下代码 2,这个代码还是没问题的
    • 代码4。本以为找到问题所在之后,又稍微修改了下代码 1,这个代码还是没问题的

动机

今天写代码,处理通量站数据的时候出错。代码逻辑没问题,但是就是得不到想要的结果,然后做个笔记。可能问题是我自己遇到的,在这里其他人也没经历,所以也看不懂。总体而言:Pandas:从一个DataFrame中直接索引赋值到另一个索引位置出错。必须使用一个中间变量去固定。虽然解决了问题,好像还是不知道为什么。我尝试过换python 版本(3.7 和 3.10),但是没用。

代码1,这个代码是有问题的

import pandas as pd
import numpy as np# 假设 siteData_reindexed 是你的 DataFrame
# 这里是一个示例 DataFrame
# siteData_reindexed = pd.DataFrame({
#     'SW_IN': [np.nan, 1, 2, np.nan, 4, np.nan, 6, 7, 8, 9, 10, np.nan],
#     'LW_IN': [1, 2, np.nan, 4, np.nan, 6, 7, np.nan, 9, 10, np.nan, 12],
#     'WS': [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
# }, index=pd.date_range(start="2019-06-26 14:00:00", end="2020-11-17 10:00:00", freq='60min'))# 计算每天的缺失值比例
rad_daily_miss_rate = siteData_reindexed[["SW_IN", "LW_IN"]].resample('D').apply(lambda x: x.isnull().mean())# 创建一个新的 DataFrame 来存储填补后的数据
filled_data = siteData_reindexed.copy()# 遍历每天的缺失值比例
for date, ratios in rad_daily_miss_rate.iterrows():print("##" * 30)sw_in_ratio = ratios['SW_IN']lw_in_ratio = ratios['LW_IN']print(date, sw_in_ratio, lw_in_ratio)print("前:")print(filled_data.loc[date - pd.Timedelta(hours=1): date + pd.Timedelta(hours=23), ["SW_IN", "LW_IN"]])# 检查缺失比例if sw_in_ratio == 0 and lw_in_ratio == 0:print("没有参加填补")# 如果缺失比例为0,什么都不做continueelif sw_in_ratio < 0.4 and lw_in_ratio < 0.4:# 如果缺失比例小于40%,使用 .ffill() 和 .bfill() 填补当天的 'SW_IN' 和 'LW_IN'filled_data.loc[date:date + pd.Timedelta(hours=23), ['SW_IN', 'LW_IN']] = filled_data.loc[date:date + pd.Timedelta(hours=23), ['SW_IN', 'LW_IN']].ffill().bfill()else:# 否则,使用前一天的24小时数据填补 'SW_IN' 和 'LW_IN'previous_day = date - pd.Timedelta(days=1)if previous_day in filled_data.index:print(f"填补前一天的数据: {previous_day}")print(filled_data.loc[previous_day:previous_day + pd.Timedelta(hours=23), ['SW_IN', 'LW_IN']])# 这里就是问题所在的位置filled_data.loc[date:date + pd.Timedelta(hours=23), ['SW_IN', 'LW_IN']] = filled_data.loc[previous_day:previous_day + pd.Timedelta(hours=23), ['SW_IN', 'LW_IN']]else:print(f"前一天 {previous_day} 的数据不存在")print("后:")print(filled_data.loc[date - pd.Timedelta(hours=1): date + pd.Timedelta(hours=23), ["SW_IN", "LW_IN"]])# 结果
# print(filled_data)

问题出在这里 filled_data.loc[date:date + pd.Timedelta(hours=23), ['SW_IN', 'LW_IN']] = filled_data.loc[previous_day:previous_day + pd.Timedelta(hours=23), ['SW_IN', 'LW_IN']]。必须使用一个中间变量去将数值固定,否则在内存中索引,会匹配错误。我是这么理解的。可能也是我写代码习惯不太好。

代码2,这个代码是我调试代码。拆分代码,最后找到问题所在,这个代码是正确的

""""""# 计算每天的缺失值比例
rad_daily_miss_rate = siteData_reindexed[["SW_IN","LW_IN"]].resample('D').apply(lambda x: x.isnull().mean())# 创建一个新的 DataFrame 来存储填补后的数据
filled_data= siteData_reindexed.copy()# 遍历每天的缺失值比例
for date, ratios in rad_daily_miss_rate.iterrows():if date <= pd.Timestamp("2019-06-29 23:00:00") :sw_in_ratio = ratios['SW_IN']lw_in_ratio = ratios['LW_IN']# 检查缺失比例if sw_in_ratio == 0 and lw_in_ratio == 0:print("没有参加填补")# 如果缺失比例为0,什么都不做continueelif sw_in_ratio < 0.4 and lw_in_ratio < 0.4:print("进入  sw_in_ratio < 0.4 and lw_in_ratio < 0.4 ")# 如果缺失比例小于30%,使用 .ffill() 和 .bfill() 填补当天的 'SW_IN' 和 'LW_IN'filled_data.loc[date:date + pd.Timedelta(hours=23), ['SW_IN', 'LW_IN']] = filled_data.loc[date:date + pd.Timedelta(hours=23), ['SW_IN', 'LW_IN']].ffill().bfill()else:print("进入 else")# 否则,使用前一天的24小时数据填补 'SW_IN' 和 'LW_IN'# 这个放置位置的索引timeRange = pd.date_range(start= date, end=date + pd.Timedelta(days=1), freq='60min')for date_index in timeRange:# 确保匹配到的是前一天的数据print(f"date_index: {date_index}")# 必须使用一个中间变量去将数值固定,否则在内存中索引,会匹配错误previous_day_value = siteData_reindexed.loc[date_index - pd.Timedelta(days=1), ['SW_IN', 'LW_IN']]print(f"前一天数据: {previous_day_value}")# 检查是否能成功填充filled_data.loc[date_index, ['SW_IN', 'LW_IN']] = previous_day_valueprint(f"填补后的数据: {filled_data.loc[date_index, ['SW_IN', 'LW_IN']]}")print("后:")print(filled_data.loc[date:date + pd.Timedelta(hours=23),["SW_IN","LW_IN"]])
# 结果
# print(filled_data)

代码3。本以为找到问题所在之后,又稍微修改了下代码 2,这个代码还是没问题的

""""""# 计算每天的缺失值比例
rad_daily_miss_rate = siteData_reindexed[["SW_IN","LW_IN"]].resample('D').apply(lambda x: x.isnull().mean())# 创建一个新的 DataFrame 来存储填补后的数据
filled_data= siteData_reindexed.copy()# 遍历每天的缺失值比例
for date, ratios in rad_daily_miss_rate.iterrows():if date <= pd.Timestamp("2019-06-29 23:00:00") :sw_in_ratio = ratios['SW_IN']lw_in_ratio = ratios['LW_IN']# 检查缺失比例if sw_in_ratio == 0 and lw_in_ratio == 0:print("没有参加填补")# 如果缺失比例为0,什么都不做continueelif sw_in_ratio < 0.4 and lw_in_ratio < 0.4:print("进入  sw_in_ratio < 0.4 and lw_in_ratio < 0.4 ")# 如果缺失比例小于30%,使用 .ffill() 和 .bfill() 填补当天的 'SW_IN' 和 'LW_IN'filled_data.loc[date:date + pd.Timedelta(days=1), ['SW_IN', 'LW_IN']] = filled_data.loc[date:date + pd.Timedelta(hours=23), ['SW_IN', 'LW_IN']].ffill().bfill()else:print("进入 else")# 否则,使用前一天的24小时数据填补 'SW_IN' 和 'LW_IN'# 变量前一天previous_day = date - pd.Timedelta(days=1)# 前一天的数据previous_day_data = siteData_reindexed.copy().loc[previous_day:date, ['SW_IN', 'LW_IN']]filled_data.loc[date:date + pd.Timedelta(days=1), ['SW_IN', 'LW_IN']] = previous_day_data# 这个放置位置的索引# timeRange = pd.date_range(start= date, end=date + pd.Timedelta(days=1), freq='60min')# for date_index in timeRange:##     # 确保匹配到的是前一天的数据#     print(f"date_index: {date_index}")#     # 必须使用一个中间变量去将数值固定,否则在内存中索引,会匹配错误#     previous_day_value = siteData_reindexed.loc[date_index - pd.Timedelta(days=1), ['SW_IN', 'LW_IN']]#     print(f"前一天数据: {previous_day_value}")##     # 检查是否能成功填充#     filled_data.loc[date_index, ['SW_IN', 'LW_IN']] = previous_day_value#     print(f"填补后的数据: {filled_data.loc[date_index, ['SW_IN', 'LW_IN']]}")print("后:")print(filled_data.loc[date:date + pd.Timedelta(hours=23),["SW_IN","LW_IN"]])
# 结果
# print(filled_data)

代码4。本以为找到问题所在之后,又稍微修改了下代码 1,这个代码还是没问题的

import pandas as pd
import numpy as np# 创建一个示例 DataFrame
data = {'SW_IN': [np.nan, 1, 2, np.nan, 4, np.nan, 6, 7, 8, 9, 10, np.nan],'LW_IN': [1, 2, np.nan, 4, np.nan, 6, 7, np.nan, 9, 10, np.nan, 12],'WS': [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
}
index = pd.date_range(start="2019-06-26 14:00:00", end="2020-11-17 10:00:00", freq='60min')
siteData_reindexed = pd.DataFrame(data, index=index)# 计算每天的缺失值比例
rad_daily_miss_rate = siteData_reindexed[["SW_IN", "LW_IN"]].resample('D').apply(lambda x: x.isnull().mean())# 创建一个新的 DataFrame 来存储填补后的数据
filled_data = siteData_reindexed.copy()# 遍历每天的缺失值比例
for date, ratios in rad_daily_miss_rate.iterrows():print("##" * 30)sw_in_ratio = ratios['SW_IN']lw_in_ratio = ratios['LW_IN']print(date, sw_in_ratio, lw_in_ratio)print("前:")print(filled_data.loc[date - pd.Timedelta(hours=1): date + pd.Timedelta(hours=23), ["SW_IN", "LW_IN"]])# 检查缺失比例if sw_in_ratio == 0 and lw_in_ratio == 0:print("没有参加填补")continueelif sw_in_ratio < 0.4 and lw_in_ratio < 0.4:# 填补当天的缺失值filled_data.loc[date:date + pd.Timedelta(hours=23), ['SW_IN', 'LW_IN']] = filled_data.loc[date:date + pd.Timedelta(hours=23), ['SW_IN', 'LW_IN']].ffill().bfill()else:# 使用前一天的24小时数据填补previous_day = date - pd.Timedelta(days=1)if previous_day in filled_data.index:print(f"填补前一天的数据: {previous_day}")previous_data = filled_data.loc[previous_day:previous_day + pd.Timedelta(hours=23), ['SW_IN', 'LW_IN']]print("前一天的数据:")print(previous_data)# 确保赋值的索引对齐filled_data.loc[date:date + pd.Timedelta(hours=23), ['SW_IN', 'LW_IN']] = previous_data.copy()else:print(f"前一天 {previous_day} 的数据不存在")print("后:")print(filled_data.loc[date - pd.Timedelta(hours=1): date + pd.Timedelta(hours=23), ["SW_IN", "LW_IN"]])# 结果
# print(filled_data)
http://www.dtcms.com/wzjs/560530.html

相关文章:

  • 中国水利教育培训网站广西住房和城乡建设厅网站证件
  • 有没有做家纺类的网站给公司建立网站不可以做到的
  • python网站和js做网站淄博便宜网站设
  • 长沙网站搜索引擎优化白之家低成本做网站
  • 网站建设和维护要点石狮市
  • 做网站的个人心得设计邦官网
  • 花园设计网站推荐低价网站制作
  • 360网站卖东西怎么做的应用商店软件
  • 网站项目建设合同图片制作软件免费版
  • wordpress微站wordpress 添加模块
  • 便宜网站建设 优帮云做网络推网站推广的目的
  • 建设礼品网站的策划书山西长治做网站公司
  • 专业建站网网站运营推广免费申请空间的地址有哪些
  • 做音频的网站网站建设必须在服务器
  • 杭州优质网站建设免费空间网站怎么做的
  • 即墨网站建设在哪app网站建设多少钱
  • 建网站公司要钱吗个人做论坛网站需要哪些备案
  • linux做网站教程老区建设网站
  • 青岛公司网站设计展览展会网站建设
  • 周村网站建设yx718关键词排名的排名优化
  • windows配置wordpress做优化网站能以量取胜么
  • 高密哪里做网站网站开发难点
  • 广西网站建设公司wordpress实现中英文切换
  • 软件论坛网站有哪些怎么做网站端口代理
  • 网站建设项目可行性研究报告网站开发好了如何上线
  • 大学生学风建设专题网站外贸做那种网站有哪些
  • 搭建网站商城全国信息企业公示系统查询
  • 竞价排名网站优化实习报告
  • 山东网站备案公司中国新农村建设促进会网站
  • 网站新闻图片尺寸七牛WordPress代码