当前位置: 首页 > wzjs >正文

网站制作费会计分录怎么做网络优化培训骗局

网站制作费会计分录怎么做,网络优化培训骗局,武清做网站的公司,温州城乡建设学校一、编码 当我们用数字来让电脑“认识”字符或单词时,最简单的方法是为每个字符或单词分配一个唯一的编号,然后用一个长长的向量来表示它。比如,假设“我”这个字在字典中的编号是第10个,那么它的表示就是一个很多0组成的向量&…

一、编码

        当我们用数字来让电脑“认识”字符或单词时,最简单的方法是为每个字符或单词分配一个唯一的编号,然后用一个长长的向量来表示它。比如,假设“我”这个字在字典中的编号是第10个,那么它的表示就是一个很多0组成的向量,除了第10个位置是1,其余都是0。这种表示叫做one-hot编码,中文常用字就有大约五千个,所以每个字的向量长度也就大约是五千维。

        不过,这样的表示有两个问题。第一,向量很长,存储和计算都很浪费空间,因为大部分位置都是0,没有任何信息。第二,虽然这种编码能让每个字唯一标识,但是它完全没有体现字与字之间的关系。

     one-hot编码方式存在一个问题,one-hot矩阵相当于简单的给每个单词编了 个号,但是单词和单词之间的关系则完全体现不出来,比如说”cat“和”dog“经过onehot编码后可能是‘[1,0,0,0,0,0]’和‘[0,1,0,0,0,0]’我们可以求他们的余弦相似度:

        余弦相似度为0,他们毫不相关,但实际上”cat“和”dog“应该是有关系的,至少他们都 是动物,可以发现one-hot编码并不能表示单词之间的关系。 综上所述,one-hot编码存在两个问题(维度灾难和语义鸿沟): 

        编码后形成高维稀疏矩阵占用大量空间

        编码后不能表示单词之间的关系

二、词嵌入(Word Embedding)

        词嵌入是一种将词转换为低维稠密向量的技术,旨在用连续的向量表示单词的语义和语法信息。不同于传统的独热编码(One-Hot Encoding),词嵌入能够捕捉单词之间的语义关系,比如相似词的距离更近。

主要特点:

        稠密向量:每个单词由一个实数向量表示,通常维度较低(如100、300维),节省存储空间。

        语义捕捉:通过训练,词向量中相似或相关的词在空间中的距距离更近,包括词义相似、上下文关系等。

        可迁移性:预训练的词嵌入(如Word2Vec、GloVe)可以迁移到不同的任务上,提升模型效果。

主要方法:

        Word2Vec:利用Skip-Gram或CBOW模型,通过预测邻近词或目标词学习词向量。

        GloVe:结合全局统计信息,优化词与词之间的共现概率,得到词向量。

        FastText:考虑到词内部的子词(字符n-gram),更善于处理未登录词(OOV)。

应用场景:

        词义相似性计算

        词性标注

        文本分类

        机器翻译

        其他多种NLP任务

三、Embedding降维

        WordEmbedding解决了这个问题,WordEmbedding的核心就是给每个单词赋予一 个固定长度的词嵌入向量。

        这个向量可以自己调整,可以是64维,也可以是128,512、1024,等等。而这个向 量的维度远远小于字典的长度。为了得到这个向量我们可以用一个可训练参数矩阵与 原来的one-hot编码矩阵相乘,比如说one-hot编码的矩阵大小是 100*100,可训 练参数矩阵的大小是100*100 ,那得到的词嵌入矩阵就为100*64 的矩阵,可以看 到我们将100维的特征维度降低为64维。

四、 Embedding映射

        比如说”cat“的词嵌入向量为[-0.95 0.44],"dog"的词嵌入向量为[-2.15 0.11]。此时我 们再计算”cat“和”dog“的余弦相似度:

        可以看到,现在可以体现出两个单词之间的关系。从坐标系上看他们也靠的很近。当 然这只是一种简单的词嵌入方式,即通过一个可训练矩阵将高维稀疏的矩阵映射为低 维稠密的矩阵。

五、设计思路

import torch
import torch.nn as nn# 定义一个简单的词嵌入层
embedding_dim = 64
vocab_size = 10000  # 假设词典大小为10000
embedding_layer = nn.Embedding(vocab_size, embedding_dim)# 输入一个单词的索引
word_index = torch.tensor([567])  # 假设单词"cat"在词典中的索引是567# 通过词嵌入层获取词嵌入向量a
word_embedding = embedding_layer(word_index)# 打印词嵌入向量
print("Word Embedding for 'cat':")
print(word_embedding)
http://www.dtcms.com/wzjs/55896.html

相关文章:

  • 肇庆市电商网站建设价格推广app赚钱
  • 中山网站建设制作 超凡科技2021年重大新闻事件
  • 做外贸网站需要什么条件seo导航
  • 关于电子商务网站建设的现状嘉兴seo外包
  • 扬州公司网站建设网站推广的主要方法
  • div css学习网站百度小说风云榜今天
  • 深圳网站制作联系电话营销推广的作用
  • 丽水公司做网站谷歌搜索引擎下载安装
  • 瓯海网站建设新媒体运营培训
  • 城乡建设部网站首页大数据营销是什么
  • wordpress集成后台无法登录北京seo推广外包
  • html5精美网站湖南网站设计外包费用
  • 建设银行公司机构找不到网站上海seo网站优化
  • 好一点的网站搜索电影免费观看播放
  • 三门峡城乡建设局网站永久不收费免费的聊天软件
  • 网站建设公司不赚钱百度影响力排名顺序
  • h5网站开发公司百度app安装下载免费
  • 注册网站一年多少钱如何推广
  • 西安专业做网站的的公司企业培训计划
  • 网站建设问题分类和排除方法分析关键词排名查询网站
  • 如何创办网站权威解读当前经济热点问题
  • wordpress谷歌网站地图关键词网络推广企业
  • 如何查看网站空间怎样才能被百度秒收录
  • 自己做网站优化seo的含义是什么意思
  • 宿州哪家做网站好优化关键词是什么意思
  • 网站建设及相关流程营销课程
  • 没有网站怎么做链接视频教程东莞网络推广优化排名
  • 哈尔滨网络公司网站建设电话营销销售系统
  • 重庆市建设工程信息网官网查询证书下载深圳seo博客
  • 济南小程序开发做seo是什么意思