当前位置: 首页 > wzjs >正文

企顺网网站建设外贸网站建站赚钱

企顺网网站建设,外贸网站建站赚钱,120救护车收费价格表,清理wordpress目录 1. 向状态添加键2. 更新工具中的状态3. 构建状态图4. 提示聊天机器人5. 添加人工协助6. 手动更新状态参考 1. 向状态添加键 通过向状态添加name和birthday键来更新聊天机器人对实体生日的研究: from typing import Annotated from typing_extensions import T…

目录

  • 1. 向状态添加键
  • 2. 更新工具中的状态
  • 3. 构建状态图
  • 4. 提示聊天机器人
  • 5. 添加人工协助
  • 6. 手动更新状态
  • 参考

1. 向状态添加键

  通过向状态添加name和birthday键来更新聊天机器人对实体生日的研究:

from typing import Annotated
from typing_extensions import TypedDict
from langgraph.graph.message import add_messagesclass State(TypedDict):messages: Annotated[list, add_messages]name: strbirthday: str

  将这些信息添加到状态中,可以使其被其他图节点以及图的持久层轻松访问。

2. 更新工具中的状态

  在human_assistance工具中填充状态键。这允许人类在信息存储到状态中之前进行审查。使用Command从工具内部发出状态更新。

from langchain_core.messages import ToolMessage
from langchain_core.tools import InjectedToolCallId, tool
from langgraph.types import Command, interrupt@tool
# Note that because we are generating a ToolMessage for a state update, we
# generally require the ID of the corresponding tool call. We can use
# LangChain's InjectedToolCallId to signal that this argument should not
# be revealed to the model in the tool's schema.
def human_assistance(name: str, birthday: str, tool_call_id: Annotated[str, InjectedToolCallId]
) -> str:"""Request assistance from a human"""human_response = interrupt({"question": "Is this correct?","name": name,"birthday": birthday})# If the information is correct, update the state as-is.if human_response.get("correct", "").lower().startswith("y"):verified_name = nameverified_birthday = birthdayresponse = "Correct"# Otherwise, receive information from the human reviewerelse:verified_name = human_response.get("name", name)verified_birthday = human_response.get("birthday", birthday)response = f"Made a correction: {human_response}"# This time we explicitly update the state with a ToolMessage inside# the tool.state_update = {"name": verified_name,"birthday": verified_birthday,"messages": [ToolMessage(response, tool_call_id=tool_call_id)]}# We return a Command object in the tool to update our state.return Command(update=state_update)

3. 构建状态图

  构建状态图:

from langchain_tavily import TavilySearch
from langchain.chat_models import init_chat_modelfrom langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import StateGraph, START, END
from langgraph.prebuilt import ToolNode, tools_conditionfrom langgraph.types import Command, interruptllm = init_chat_model("deepseek:deepseek-chat"
)graph_builder = StateGraph(State)tool = TavilySearch(max_results=2)
tools = [tool, human_assistance]
llm_with_tools = llm.bind_tools(tools)def chatbot(state: State):message = llm_with_tools.invoke(state["messages"])# Because we will be interrupting during tool execution,# we disable parallel tool calling to avoid repeating any# tool invocations when we resume.assert len(message.tool_calls) <= 1return {"messages": [message]}graph_builder.add_node("chatbot", chatbot)tool_node = ToolNode(tools=tools)
graph_builder.add_node("tools", tool_node)graph_builder.add_conditional_edges("chatbot",tools_condition,
)
graph_builder.add_edge("tools", "chatbot")
graph_builder.add_edge(START, "chatbot")memory = MemorySaver()graph = graph_builder.compile(checkpointer=memory)

4. 提示聊天机器人

  提示聊天机器人查找LangGraph库的生日,并在获取所需信息后指示聊天机器人使用human_assistance工具。通过在工具的参数中设置name和birthday,你强制聊天机器人为这些字段生成建议。

user_input = ("Can you look up when LangGraph was released? ""When you have the answer, use the human_assistance tool for review."
)config = { "configurable": { "thread_id": "1"} }events = graph.stream({ "messages": [ { "role": "user", "content": user_input } ] },config,stream_mode="values"
)for event in events:if "messages" in event:event["messages"][-1].pretty_print()

  运行结果:

================================ Human Message =================================Can you look up when LangGraph was released? When you have the answer, use the human_assistance tool for review.
================================== Ai Message ==================================
Tool Calls:tavily_search (call_0_d8e088fb-fd82-42e5-9c75-fcab225d7678)Call ID: call_0_d8e088fb-fd82-42e5-9c75-fcab225d7678Args:query: LangGraph release datesearch_depth: advanced
================================= Tool Message =================================
Name: tavily_search{"query": "LangGraph release date", "follow_up_questions": null, "answer": null, "images": [], "results": [{"url": "https://pypi.org/project/langgraph/", "title": "langgraph - PyPI", "content": "LangGraph is inspired by Pregel and Apache Beam. The public interface draws inspiration from NetworkX. LangGraph is built by LangChain Inc, the creators of LangChain, but can be used without LangChain.\n\nProject details\n\nVerified details\n\nMaintainers\n\nUnverified details\n\nProject links\n\nMeta\n\nClassifiers\n\nRelease history\n\nRelease notifications |\n              RSS feed\n\n0.4.3\n\nMay 8, 2025\n\n0.4.2\n\nMay 7, 2025\n\n0.4.1\n\nApr 30, 2025\n\n0.4.0\n\nApr 29, 2025\n\n0.3.34\n\nApr 24, 2025\n\n0.3.33\n\nApr 23, 2025 [...] langgraph 0.4.3\n\npip install langgraph\n\n\nCopy PIP instructions\n\nReleased: \n  May 8, 2025\n\nBuilding stateful, multi-actor applications with LLMs\n\nNavigation\n\nVerified details\n\nMaintainers\n\nUnverified details\n\nProject links\n\nMeta\n\nClassifiers\n\nProject description\n\n\n\n[!NOTE]\nLooking for the JS version? See the JS repo and the JS docs. [...] 0.2.14\n\nAug 24, 2024\n\n0.2.13\n\nAug 23, 2024\n\n0.2.12\n\nAug 22, 2024\n\n0.2.11\n\nAug 22, 2024\n\n0.2.10\n\nAug 21, 2024\n\n0.2.9\n\nAug 21, 2024\n\n0.2.8\n\nAug 21, 2024\n\n0.2.7\n\nAug 21, 2024\n\n0.2.7a0\n                  \npre-release\n\nAug 21, 2024\n\n0.2.6\n\nAug 21, 2024\n\n0.2.5\n\nAug 21, 2024\n\n0.2.5a0\n                  \npre-release\n\nAug 20, 2024\n\n0.2.4\n\nAug 15, 2024\n\n0.2.3\n\nAug 8, 2024\n\n0.2.2\n\nAug 7, 2024\n\n0.2.1\n\nAug 7, 2024\n\n0.2.0\n\nAug 7, 2024\n\n0.1.19\n\nAug 1, 2024\n\n0.1.18\n                  \nyanked\n\nJul 31, 2024", "score": 0.8033131, "raw_content": null}, {"url": "https://github.com/langchain-ai/langgraph/releases", "title": "Releases · langchain-ai/langgraph - GitHub", "content": "Source code(zip) 2025-05-09T20:14:45Z \nSource code(tar.gz) 2025-05-09T20:14:45Z [...] Source code(zip) 2025-05-02T05:42:07Z \nSource code(tar.gz) 2025-05-02T05:42:07Z [...] Assets 2\n\nSource code(zip) 2025-05-15T15:20:59Z \nSource code(tar.gz) 2025-05-15T15:20:59Z", "score": 0.78194773, "raw_content": null}], "response_time": 1.39}
================================== Ai Message ==================================
Tool Calls:human_assistance (call_0_2a2e50aa-70ea-4892-9d89-e22d942ce91d)Call ID: call_0_2a2e50aa-70ea-4892-9d89-e22d942ce91dArgs:name: LangGraph Release Date Reviewbirthday: 2023-01-01

  再在human_assistance工具中遇到了interrupt。

5. 添加人工协助

  聊天机器人未能识别正确的日期,因此向它提供信息:

human_command = Command(resume={"name": "LangGraph","birthday": "Jan 17, 2024"}
)events = graph.stream(human_command, config, stream_mode="values")
for event in events:if "messages" in event:event["messages"][-1].pretty_print()

  运行结果为:

================================== Ai Message ==================================
Tool Calls:human_assistance (call_0_2a2e50aa-70ea-4892-9d89-e22d942ce91d)Call ID: call_0_2a2e50aa-70ea-4892-9d89-e22d942ce91dArgs:name: LangGraph Release Date Reviewbirthday: 2023-01-01
================================= Tool Message =================================
Name: human_assistanceMade a correction: {'name': 'LangGraph', 'birthday': 'Jan 17, 2024'}
================================== Ai Message ==================================The release date of LangGraph appears to be around January 17, 2024, based on the review. Let me know if you'd like further details or confirmation!

  现在,这些字段反映在状态中:

snapshot = graph.get_state(config){k: v for k, v in snapshot.values.items() if k in ("name", "birthday")}

  运行结果为:

{'name': 'LangGraph', 'birthday': 'Jan 17, 2024'}

6. 手动更新状态

  LangGraph对应用程序状态提供了高度的控制。例如,在任何时刻(包括中断时),你都可以使用graph.update_state手动覆盖一个键:

graph.update_state(config, {"name", "LangGraph (library)"})

  运行结果为:

{'configurable': {'thread_id': '1','checkpoint_ns': '','checkpoint_id': '1f0363ee-7b8e-674c-8006-33b41fa5d353'}}

  再通过graph.get_state查看状态中的值:

snapshot = graph.get_state(config){k: v for k, v in snapshot.values.items() if k in ("name", "birthday")}

  运行结果为:

{'name': 'LangGraph (library)', 'birthday': 'Jan 17, 2024'}

参考

https://langchain-ai.github.io/langgraph/tutorials/get-started/5-customize-state/

http://www.dtcms.com/wzjs/557412.html

相关文章:

  • 怎么将自己做的网站发到网上去撮合交易网站建设方案
  • asp 个人网站国外10条新闻简短
  • 设备免费做网站推广怎么开一家网站开发公司
  • 怎么用php自己做网站吗网络推广理实一体化软件
  • 沧州网站seo公司丽水网站建设明恩玉杰
  • 网页制作网站创建中小型网站建设公司
  • 微信官网网站网站内容检测
  • 专注电子商务网站建设嵌入式软件开发项目
  • 电子科技网站建设室内设计模拟app
  • 建一个购物网站需要什么条件wordpress 主题 水墨
  • 数据展示网站模板丽水城乡建设局网站
  • 粉末涂料 技术支持 东莞网站建设网站建设预付流程
  • 又做投资的网站吗用dw怎么做用户登录页面的网站
  • 建设电子商务网站策划书wordpress ajax失败
  • 泰州专业做网站公司域名注册新网
  • 网站举报查询网站制作公司网站源码
  • 衣服网站建设规划书廊坊百度推广电话
  • 国外的营销网站有哪些wordpress新浪图床
  • 本溪做网站松江注册公司
  • 做百度关键词网站网站使用前流程
  • 买空间域名做网站做安卓icon图标包下载网站
  • 杭州网站排名服务沧州公司官网
  • 网站板块设计搜索引擎优化网站
  • 咸阳做网站排名珠海微信公众号制作
  • 网站开发网站设计做多宽
  • 成都网站建设技术支持wordpress 错误:cookies因预料之外的输出被阻止.
  • 高校信息公开网站建设河南的网络推广公司
  • 电商免费网站入口网站外链发布
  • 什么网站做推广比较好windows7系统优化工具
  • 江西房地产网站建设西安网站公司