当前位置: 首页 > wzjs >正文

吉林省级建设行政主管部门政务网站保险公司网站查询

吉林省级建设行政主管部门政务网站,保险公司网站查询,中国关于影院建设的网站,建设工程协会网站查询本文介绍了一种名为 **LLM-Pruner** 的方法,用于对大型语言模型(LLMs)进行结构化剪枝,以减少模型大小和计算需求,同时保留其多任务解决和语言生成能力。LLM-Pruner 通过依赖检测和重要性估计实现高效剪枝,并…

本文介绍了一种名为 **LLM-Pruner** 的方法,用于对大型语言模型(LLMs)进行结构化剪枝,以减少模型大小和计算需求,同时保留其多任务解决和语言生成能力。LLM-Pruner 通过依赖检测和重要性估计实现高效剪枝,并结合低秩近似(LoRA)快速恢复模型性能。以下是文章的核心公式及其解释:

---

### 1. **依赖关系的定义**
文章定义了模型中结构之间的依赖关系,用于确定哪些结构需要同时剪枝。依赖关系的定义如下:
- **公式 (1)**:  
  \[
  N_j \in \text{Out}(N_i) \land \text{Deg}^-(N_j) = 1 \Rightarrow N_j \text{ 依赖于 } N_i
  \]
  其中,\(N_i\) 和 \(N_j\) 是模型中的两个神经元,\(\text{Out}(N_i)\) 表示指向 \(N_i\) 的神经元集合,\(\text{Deg}^-(N_j)\) 表示 \(N_j\) 的入度。如果 \(N_j\) 的入度为1且唯一依赖于 \(N_i\),则 \(N_j\) 依赖于 \(N_i\)。

- **公式 (2)**:  
  \[
  N_i \in \text{In}(N_j) \land \text{Deg}^+(N_i) = 1 \Rightarrow N_i \text{ 依赖于 } N_j
  \]
  其中,\(\text{In}(N_j)\) 表示从 \(N_j\) 指向的神经元集合,\(\text{Deg}^+(N_i)\) 表示 \(N_i\) 的出度。如果 \(N_i\) 的出度为1且唯一指向 \(N_j\),则 \(N_i\) 依赖于 \(N_j\)。

**作用**:这些公式用于自动检测模型中耦合的结构,确保剪枝时不会破坏模型的依赖关系。

---

### 2. **重要性估计**
为了决定哪些结构可以被剪枝,文章提出了基于梯度和近似 Hessian 矩阵的重要性估计方法。

- **公式 (3)**:向量级重要性估计  
  \[
  I_{W_i} = |\Delta L(D)| = |L_{W_i}(D) - L_{W_i=0}(D)| = \left|\frac{\partial L(D)}{\partial W_i} W_i - \frac{1}{2} W_i^\top H W_i + O(\|W_i\|^3)\right|
  \]
  其中,\(L\) 是模型的损失函数,\(D\) 是用于估计重要性的数据集,\(H\) 是 Hessian 矩阵。公式中忽略了 Hessian 矩阵的高阶项,因为计算复杂度较高。

- **公式 (4)**:元素级重要性估计  
  \[
  I_{W_k^i} = |\Delta L(D)| = |L_{W_k^i}(D) - L_{W_k^i=0}(D)| = \left|\frac{\partial L(D)}{\partial W_k^i} W_k^i - \frac{1}{2} W_k^i H_{kk} W_k^i + O(\|W_k^i\|^3)\right|
  \]
  其中,\(k\) 表示权重矩阵 \(W_i\) 中的第 \(k\) 个元素,\(H_{kk}\) 是 Hessian 矩阵的对角线元素,可以用 Fisher 信息矩阵近似。

- **公式 (5)**:近似 Hessian 矩阵  
  \[
  I_{W_k^i} \approx |L_{W_k^i}(D) - L_{W_k^i=0}(D)| \approx \left|\frac{\partial L(D)}{\partial W_k^i} W_k^i - \frac{1}{2} \sum_{j=1}^N \left(\frac{\partial L(D_j)}{\partial W_k^i} W_k^i\right)^2 + O(\|W_k^i\|^3)\right|
  \]
  其中,\(N\) 是数据集 \(D\) 的样本数量。

**作用**:这些公式用于评估每个结构或参数对模型性能的影响,帮助选择剪枝的目标。

---

### 3. **组重要性聚合**
文章提出了多种聚合方法来评估整个结构组的重要性:
- **求和(Summation)**:  
  \[
  I_G = \sum_{i=1}^M I_{W_i} \quad \text{或} \quad I_G = \sum_{i=1}^M \sum_k I_{W_k^i}
  \]
- **求积(Product)**:  
  \[
  I_G = \prod_{i=1}^M I_{W_i} \quad \text{或} \quad I_G = \prod_{i=1}^M \prod_k I_{W_k^i}
  \]
- **取最大值(Max)**:  
  \[
  I_G = \max_{i=1}^M I_{W_i} \quad \text{或} \quad I_G = \max_{i=1}^M \max_k I_{W_k^i}
  \]
- **仅最后执行的结构(Last-Only)**:  
  \[
  I_G = I_{W_l} \quad \text{或} \quad I_G = \sum_k I_{W_k^l}
  \]
  其中,\(l\) 是组中最后执行的结构。

**作用**:这些聚合方法用于将单个结构或参数的重要性汇总为组的重要性,以便决定哪些组可以被剪枝。

---

### 4. **快速恢复阶段**
为了快速恢复剪枝后的模型性能,文章使用了低秩近似(LoRA)方法。具体公式如下:
- **公式 (6)**:LoRA 更新  
  \[
  \Delta W = PQ \quad \text{其中} \quad P \in \mathbb{R}^{d^- \times d}, \quad Q \in \mathbb{R}^{d \times d^+}
  \]
  \[
  f(x) = (W + \Delta W)X + b = (WX + b) + (PQ)X
  \]
  其中,\(W\) 是模型的权重矩阵,\(\Delta W\) 是更新值,\(P\) 和 \(Q\) 是低秩矩阵,\(d\) 是低秩维度。

**作用**:LoRA 通过分解权重矩阵的更新值为两个低秩矩阵的乘积,减少了优化参数的数量,从而加速模型的恢复过程。

---

### 5. **实验结果**
文章在多个大型语言模型(如 LLaMA、Vicuna 和 ChatGLM)上验证了 LLM-Pruner 的效果。实验结果表明:
- 在 20% 的剪枝率下,模型保留了 94.97% 的原始性能。
- 使用 LoRA 恢复后,模型的性能进一步提升,且仅需 3 小时的调优时间。
- 剪枝后的模型在零样本分类和生成任务中表现出色,且计算效率显著提高。

---

### 总结
LLM-Pruner 通过依赖关系检测和重要性估计实现了对大型语言模型的高效结构化剪枝,并结合 LoRA 快速恢复模型性能。这种方法在减少模型大小和计算需求的同时,保留了模型的多任务能力和语言生成能力。

http://www.dtcms.com/wzjs/553903.html

相关文章:

  • 淘宝客单页网站免费ppt模板下载中国风
  • 律师行业协会网站建设酷虎云建站工具
  • 做网站建本地环境作用wordpress 后台图标
  • 鲁山网站建设兼职企业网站建设合同书
  • 平谷网站建设苏州相城区网站建设
  • 网页设计制作网站用vs做网站
  • html代码表格苏州市优化网站推广哪家好
  • 网站相互推广怎么做无成本搭建属于自己的网站
  • 网站开发小图片女孩学网站开发与运营方向怎么样
  • 做网站和做免费推广网站的区别软件外包的成本标准
  • H5网站建设网站定制开发客户管理软件 crm
  • 那个网站教人做冰点大连网站设计布局
  • 手机网站图片切换国内有奖活动第一分享平台
  • 网站搭建逻辑结构图WordPress去除官网链接
  • 大兴快速网站建设哪家好益阳建设网站公司
  • 网站建设 熊掌号湖北省建设厅网站怎么打不开
  • 天蝎网站建设公司企业微信一年的费用要多少
  • 网站优化排名易下拉教程学做蛋糕网站
  • 网站原创内容优化wordpress支持论坛
  • wordpress网站不安全dede网站制作
  • 燕莎做网站wordpress首页显示链接
  • 做网站 视频加载太慢网址搜索
  • 网站用自己的电脑做服务器吗设计网站 知乎
  • 网站开发与应用课程讨论定制衣柜十大品牌排名
  • 网站怎么做才美观福建省建设资格注册与管理中心网站
  • 北京东城网站建设公司网站备案详细流程
  • 厦门市建设路网站网站建设与管理考试题
  • 目前会展相关网站的建设情况手机网站开发需要哪些技术
  • 长沙模板网站建设西安企业做网站多少钱
  • 建设网站询价对比表模板网站文件下载系统