当前位置: 首页 > wzjs >正文

江门恒阳网站建设营口网站制作

江门恒阳网站建设,营口网站制作,wordpress注册页面带邀请码,如何 在网站上面做推广目录 一、数据及分析对象 二、目的及分析任务 三、方法及工具 四、数据读入 五、数据理解 六、数据准备 七、模型构建 八、模型预测 九、模型评价 一、数据及分析对象 CSV格式的数据文件——“Advertising.csv” 数据集链接:https://download.csdn.net/d…

目录

一、数据及分析对象

二、目的及分析任务

三、方法及工具

四、数据读入

五、数据理解

六、数据准备

七、模型构建

八、模型预测

九、模型评价


一、数据及分析对象

CSV格式的数据文件——“Advertising.csv”

数据集链接:https://download.csdn.net/download/m0_70452407/88520033

数据集包含了200个不同市场的产品销售额,每个销售额对应3中广告媒体投入成本,分别是TV、radio和newspaper,主要属性如下:

(1)Number:数据集的编号。

(2)TV:电视媒体的广告投入。

(3)radio:广播媒体的广告投入。

(4)newspaper:报纸媒体的广告投入。

(5)sales:商品的销量

二、目的及分析任务

理解机器学习方法在数据分析中的应用——采用多元回归方法进行回归分析。

(1)数据预处理,绘制TV、radio、newspaper这3个自变量与因变量sales的相关关系图。

(2)采用两种不同方法进行多元回归分析——统计学方法和机器学习方法。

(3)进行模型预测,得出模型预测结果。

(4)对预测结果进行评价。

三、方法及工具

Python语言及pandas、Seaborn、matplotlib、statsmodels、scikit-learn等包。

四、数据读入

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import os
data=pd.read_csv("D:\\Download\\JDK\\数据分析理论与实践by朝乐门_机械工业出版社\\第3章 回归分析\\Advertising.csv")
data.head()

五、数据理解

对数据框进行探索性分析,这里采用的实现方式为调用Seaborn包中的pairplot()方法,绘制TV、radio、newspaper这3个变量与sales变量之间的关系图,其中kind参数设置为“reg"。为非对角线上的散点图拟合出一条回归直线,可以更直观地显示变量之间的关系,height参数为7,aspect参数为0.8,表明每个构面的高度为7,宽高比为0.8。调用matplotlib.pyplot.show()方法显示图形。

sns.pairplot(data,x_vars=['TV','radio','newspaper'],y_vars='sales',height=7,aspect=0.8,kind='reg')
plt.show()

六、数据准备

进行多元回归分析前,应准备好模型所需的特征矩阵(X)和目标向量(y)。这里采用drop()方法删除数据框data中的Number以及sales两列返回另一个DataFrame对象Data,并显示Data数据集,即特征矩阵的前5行数据。

#第一步:构建特征矩阵和目标数组
Data=data.drop(['Number','sales'],axis=1)
Data.head()

确定目标向量sales为data数据框中的sales列,并显示其数据类型:

sales=data['sales']
type(sales)
pandas.core.series.Series

输出结果显示了sales的数据类型为pandas的Series。

将目标向量sales的数据转换为NumPy中的ndarray,这里采用的实现方法为调用NumPy包中的ravel()方法返回数组。

import numpy as np
sales=np.ravel(sales)
type(sales)
numpy.ndarray

 输出结果显示sales的数据类型为NumPy的ndarray数组对象。

七、模型构建

采用统计学方法,检验模型的线性显著性。在这里调用statsmodels统计建模工具包,通过statsmodels.api(基于数组)接口进行访问。采用add_constant()方法加上一列常数项,反映线性回归模型的截距。采用OLS()方法用最小二乘法来建立myModel模型。采用模型的fit()方法返回一个回归结果对象results,该对象results包含了估计的模型参数和其他的诊断。在results上调用summary()方法可以打印出一个模型的诊断细节。

#第一种分析方法——基于统计学的建模
import statsmodels.api as sm
X_add_const=sm.add_constant(Data.to_numpy())
myModel=sm.OLS(sales,X_add_const)
results=myModel.fit()
print(results.summary())
OLS Regression Results                            
==============================================================================
Dep. Variable:                      y   R-squared:                       0.897
Model:                            OLS   Adj. R-squared:                  0.896
Method:                 Least Squares   F-statistic:                     570.3
Date:                Thu, 09 Nov 2023   Prob (F-statistic):           1.58e-96
Time:                        20:01:27   Log-Likelihood:                -386.18
No. Observations:                 200   AIC:                             780.4
Df Residuals:                     196   BIC:                             793.6
Df Model:                           3                                         
Covariance Type:            nonrobust                                         
==============================================================================coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
const          2.9389      0.312      9.422      0.000       2.324       3.554
x1             0.0458      0.001     32.809      0.000       0.043       0.049
x2             0.1885      0.009     21.893      0.000       0.172       0.206
x3            -0.0010      0.006     -0.177      0.860      -0.013       0.011
==============================================================================
Omnibus:                       60.414   Durbin-Watson:                   2.084
Prob(Omnibus):                  0.000   Jarque-Bera (JB):              151.241
Skew:                          -1.327   Prob(JB):                     1.44e-33
Kurtosis:                       6.332   Cond. No.                         454.
==============================================================================Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

重点考虑参数R-squared、Prob(F-statistic)以及P>|t|的两个值,通过这4个参数就能判断模型是否线性显著,同时知道显性的程度。

其中,R-squared(决定系数)=SSR/SST,取值范围为[0,1],其值越接近1,说明回归效果越好。在这里,R-squared的值为0.897,接近于1,说明回归效果好。F-statistic(F检验)的值越大越能推翻原假设,原假设是“我们的模型不是线性模型”。Prob(F-statistic)是F-statistic的概率,这个值越小越能拒绝原假设,这里为1.58e-96,该值非常小,足以证明是线性显著的。

接着,采用机器学习的方法再进行建模,以便进行两者的对比分析。为了采用机器学习方法,需要拆分训练集和测试机。在这里通过调用sklearn.model_selection中的train_test_split()方法进行训练姐和测试集的拆分,random_state为1,采用25%的数据测试,75%的数据训练。

#第二种分析方法——基于机器学习
#拆分训练集和测试集
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(Data,sales,random_state=1,test_size=0.25)

查看训练数据和测试数据的数量:

#查看训练数据和测试数据的数量
print(X_train.shape)
print(X_test.shape)
(150, 3)
(50, 3)

在训练集上训练模型。这里调用sklearn.linear_model中默认参数的LinearRegression对训练集进行线性回归。

from sklearn.linear_model import LinearRegression
linreg=LinearRegression()
model=linreg.fit(X_train,y_train)
print(model)
LinearRegression()

 在此基础上,查看多元线性回归模型的回归系数:

model.coef_
array([0.04656457, 0.17915812, 0.00345046])

 查看回归模型的截距:

model.intercept_
2.8769666223179335

 最后,调用score()方法返回预测的R-squared(决定系数),即模型的准确率:

#准确率
model.score(X_test,y_test)
0.9156213613792232

八、模型预测

采用predict()方法使用线性模型进行预测,返回模型的预测结果y_pred:

y_pred=linreg.predict(X_test)
y_pred
array([21.70910292, 16.41055243,  7.60955058, 17.80769552, 18.6146359 ,23.83573998, 16.32488681, 13.43225536,  9.17173403, 17.333853  ,14.44479482,  9.83511973, 17.18797614, 16.73086831, 15.05529391,15.61434433, 12.42541574, 17.17716376, 11.08827566, 18.00537501,9.28438889, 12.98458458,  8.79950614, 10.42382499, 11.3846456 ,14.98082512,  9.78853268, 19.39643187, 18.18099936, 17.12807566,21.54670213, 14.69809481, 16.24641438, 12.32114579, 19.92422501,15.32498602, 13.88726522, 10.03162255, 20.93105915,  7.44936831,3.64695761,  7.22020178,  5.9962782 , 18.43381853,  8.39408045,14.08371047, 15.02195699, 20.35836418, 20.57036347, 19.60636679])

九、模型评价

对预测结果评价,这里采用matplotlib.pyplot的plot()函数绘制预测结果与真实值图,两条线分别表示模型预测值和观察值。

import matplotlib.pyplot as plt
plt.figure()
plt.plot(range(len(y_pred)),y_pred,'b',label="predict")
plt.plot(range(len(y_pred)),y_test,'r',label="test")
plt.legend(loc="upper right")
plt.xlabel("the number of sales")
plt.ylabel("value of sales")
plt.show()

从运行结果可以看出,预测结果与真实值的折线趋于重合,此结果说明模型的预测结果较好。 

http://www.dtcms.com/wzjs/546182.html

相关文章:

  • 贵州省网站集约化建设网站建设设计案例网站logo实验报告
  • 银川建网站wordpress 设置中文
  • 网站开发需要掌握技术中国室内设计艺术千年回眸
  • 没固定ip怎么做网站网吧设计装饰公司
  • 企业网站名是什么意思快速搭建网站框架
  • 做任务给钱的网站一个域名怎么做网站
  • 做网站的可以注册个工作室吗wordpress评论字段
  • 响应式网站什么意思泉州网站优化排名
  • 网站空间 上传程序最高法律网站是做啥的
  • 网页上做ppt的网站wordpress被设置不录入
  • 东莞找网站设计培训体系
  • 网站关键词推广做自然排名珠海做企业网站多少钱
  • ysl免费网站建设西安网站建设熊掌
  • 做it的兼职网站有哪些学校电脑课做网站的软件
  • 免费开商城网站网站建设投放广告
  • 备案网站域名和主机关系桂林市内旅游必去景点
  • 网上商城网站怎么做wordpress 微信主题
  • 深圳整站做网站是怎样赚钱
  • 商业图片素材网站网站运营培训机构
  • 上海 顶尖 网站设计新营销方式有哪些
  • No酒类网站建设深圳网站建设微赢天下
  • 怎么做淘宝客导购网站推广德州seo整站优化
  • 物流网站建设策划书的总结专业建站团队
  • 搜索引擎网站推广定义做冰饮视频网站
  • 网站开发实习计划模板品牌策划设计
  • 阿里网站制作需要多少钱网站建设如何接单
  • 做网站可以在哪儿接活免费搭建商业网站
  • 传统文化网站设计广东平台网站建设
  • 校园网站建设工作计划浏览器下载免费安装
  • wordpress网站迁移问题注册咨询服务公司有什么要求