当前位置: 首页 > wzjs >正文

做俄罗斯网站网站建设管理流程

做俄罗斯网站,网站建设管理流程,石家庄营销型网站建设费用,网页设计课程报告今天学习讲义Day17的内容:无监督算法中的聚类浙大疏锦行 Q1. 什么是聚类? 本质上就是一种分组分类 关于聚类的准备工作: 代码实现 # 先运行之前预处理好的代码 import pandas as pd import pandas as pd #用于数据处理和分析&#xff…

今天学习讲义Day17的内容:无监督算法中的聚类@浙大疏锦行

Q1. 什么是聚类?

本质上就是一种分组分类

关于聚类的准备工作:

代码实现

# 先运行之前预处理好的代码
import pandas as pd
import pandas as pd    #用于数据处理和分析,可处理表格数据。
import numpy as np     #用于数值计算,提供了高效的数组操作。
import matplotlib.pyplot as plt    #用于绘制各种类型的图表
import seaborn as sns   #基于matplotlib的高级绘图库,能绘制更美观的统计图形。
import warnings
warnings.filterwarnings("ignore")# 设置中文字体(解决中文显示问题)
plt.rcParams['font.sans-serif'] = ['SimHei']  # Windows系统常用黑体字体
plt.rcParams['axes.unicode_minus'] = False    # 正常显示负号
data = pd.read_csv('data.csv')    #读取数据# 先筛选字符串变量 
discrete_features = data.select_dtypes(include=['object']).columns.tolist()
# Home Ownership 标签编码
home_ownership_mapping = {'Own Home': 1,'Rent': 2,'Have Mortgage': 3,'Home Mortgage': 4
}
data['Home Ownership'] = data['Home Ownership'].map(home_ownership_mapping)# Years in current job 标签编码
years_in_job_mapping = {'< 1 year': 1,'1 year': 2,'2 years': 3,'3 years': 4,'4 years': 5,'5 years': 6,'6 years': 7,'7 years': 8,'8 years': 9,'9 years': 10,'10+ years': 11
}
data['Years in current job'] = data['Years in current job'].map(years_in_job_mapping)# Purpose 独热编码,记得需要将bool类型转换为数值
data = pd.get_dummies(data, columns=['Purpose'])
data2 = pd.read_csv("data.csv") # 重新读取数据,用来做列名对比
list_final = [] # 新建一个空列表,用于存放独热编码后新增的特征名
for i in data.columns:if i not in data2.columns:list_final.append(i) # 这里打印出来的就是独热编码后的特征名
for i in list_final:data[i] = data[i].astype(int) # 这里的i就是独热编码后的特征名# Term 0 - 1 映射
term_mapping = {'Short Term': 0,'Long Term': 1
}
data['Term'] = data['Term'].map(term_mapping)
data.rename(columns={'Term': 'Long Term'}, inplace=True) # 重命名列
continuous_features = data.select_dtypes(include=['int64', 'float64']).columns.tolist()  #把筛选出来的列名转换成列表# 连续特征用中位数补全
for feature in continuous_features:     mode_value = data[feature].mode()[0]            #获取该列的众数。data[feature].fillna(mode_value, inplace=True)          #用众数填充该列的缺失值,inplace=True表示直接在原数据上修改。# 最开始也说了 很多调参函数自带交叉验证,甚至是必选的参数,你如果想要不交叉反而实现起来会麻烦很多
# 所以这里我们还是只划分一次数据集
from sklearn.model_selection import train_test_split
X = data.drop(['Credit Default'], axis=1)  # 特征,axis=1表示按列删除
y = data['Credit Default'] # 标签
# # 按照8:2划分训练集和测试集
# X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)  # 80%训练集,20%测试集
import numpy as np
import pandas as pd
from sklearn.cluster import KMeans, DBSCAN, AgglomerativeClustering
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
import seaborn as sns# 标准化数据(聚类前通常需要标准化)
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# X_scaled

Q2. 聚类效果评估指标?

摘自讲义

Q3. 聚类常见的算法有哪些?

摘自讲义

(1)KMeans 聚类

基本概念

代码实现
import numpy as np
import pandas as pd
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.metrics import silhouette_score, calinski_harabasz_score, davies_bouldin_score
import matplotlib.pyplot as plt
import seaborn as sns# 评估不同 k 值下的指标
k_range = range(2, 11)  # 测试 k 从 2 到 10
inertia_values = []
silhouette_scores = []
ch_scores = []
db_scores = []for k in k_range:kmeans = KMeans(n_clusters=k, random_state=42)kmeans_labels = kmeans.fit_predict(X_scaled)inertia_values.append(kmeans.inertia_)  # 惯性(肘部法则)silhouette = silhouette_score(X_scaled, kmeans_labels)  # 轮廓系数silhouette_scores.append(silhouette)ch = calinski_harabasz_score(X_scaled, kmeans_labels)  # CH 指数ch_scores.append(ch)db = davies_bouldin_score(X_scaled, kmeans_labels)  # DB 指数db_scores.append(db)print(f"k={k}, 惯性: {kmeans.inertia_:.2f}, 轮廓系数: {silhouette:.3f}, CH 指数: {ch:.2f}, DB 指数: {db:.3f}")# 绘制评估指标图
plt.figure(figsize=(15, 10))# 肘部法则图(Inertia)
plt.subplot(2, 2, 1)
plt.plot(k_range, inertia_values, marker='o')
plt.title('肘部法则确定最优聚类数 k(惯性,越小越好)')
plt.xlabel('聚类数 (k)')
plt.ylabel('惯性')
plt.grid(True)# 轮廓系数图
plt.subplot(2, 2, 2)
plt.plot(k_range, silhouette_scores, marker='o', color='orange')
plt.title('轮廓系数确定最优聚类数 k(越大越好)')
plt.xlabel('聚类数 (k)')
plt.ylabel('轮廓系数')
plt.grid(True)# CH 指数图
plt.subplot(2, 2, 3)
plt.plot(k_range, ch_scores, marker='o', color='green')
plt.title('Calinski-Harabasz 指数确定最优聚类数 k(越大越好)')
plt.xlabel('聚类数 (k)')
plt.ylabel('CH 指数')
plt.grid(True)# DB 指数图
plt.subplot(2, 2, 4)
plt.plot(k_range, db_scores, marker='o', color='red')
plt.title('Davies-Bouldin 指数确定最优聚类数 k(越小越好)')
plt.xlabel('聚类数 (k)')
plt.ylabel('DB 指数')
plt.grid(True)plt.tight_layout()
plt.show()
打印结果:
k=2, 惯性: 218529.50, 轮廓系数: 0.320, CH 指数: 479.34, DB 指数: 3.222
k=3, 惯性: 207982.87, 轮廓系数: 0.209, CH 指数: 441.88, DB 指数: 2.906
k=4, 惯性: 200477.28, 轮廓系数: 0.220, CH 指数: 399.12, DB 指数: 2.441
k=5, 惯性: 192940.36, 轮廓系数: 0.224, CH 指数: 384.19, DB 指数: 2.042
k=6, 惯性: 185411.81, 轮廓系数: 0.227, CH 指数: 380.64, DB 指数: 1.733
k=7, 惯性: 178444.49, 轮廓系数: 0.130, CH 指数: 378.31, DB 指数: 1.633
k=8, 惯性: 174920.27, 轮廓系数: 0.143, CH 指数: 352.31, DB 指数: 1.817
k=9, 惯性: 167383.96, 轮廓系数: 0.150, CH 指数: 364.27, DB 指数: 1.636
k=10, 惯性: 159824.84, 轮廓系数: 0.156, CH 指数: 378.43, DB 指数: 1.502

对以上代码不理解的部分进行学习

关于评估不同k值下的指标

代码继续

# 提示用户选择 k 值
selected_k = 6# 使用选择的 k 值进行 KMeans 聚类
kmeans = KMeans(n_clusters=selected_k, random_state=42)
kmeans_labels = kmeans.fit_predict(X_scaled)
X['KMeans_Cluster'] = kmeans_labels# 使用 PCA 降维到 2D 进行可视化
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_scaled)# KMeans 聚类结果可视化
plt.figure(figsize=(6, 5))
sns.scatterplot(x=X_pca[:, 0], y=X_pca[:, 1], hue=kmeans_labels, palette='viridis')
plt.title(f'KMeans Clustering with k={selected_k} (PCA Visualization)')
plt.xlabel('PCA Component 1')
plt.ylabel('PCA Component 2')
plt.show()# 打印 KMeans 聚类标签的前几行
print(f"KMeans Cluster labels (k={selected_k}) added to X:")
print(X[['KMeans_Cluster']].value_counts())
打印结果:

KMeans Cluster labels (k=6) added to X:
KMeans_Cluster
0                 5205
1                 1220
2                  903
3                  128
4                   34
5                   10
dtype: int64
对以上代码不理解处进行学习

今天学习到这里,明日学习剩余的聚类算法。加油!!!> 0 <

http://www.dtcms.com/wzjs/543424.html

相关文章:

  • php 网站部署到服务器网站选择语言怎么做
  • 网站内容发布平台源码山东省建设部网站
  • 番禺区建设局网站开发app和微网站有哪些功能
  • 中国品牌建设促进会网站网络营销推广技术
  • 景区网站建设策划石家庄官网设计及搭建
  • 修改wordpress登录地址wordpress自带主题优化
  • html手机版网站义乌做网站
  • 我的世界查建筑网站蔬菜基地做网站合适吗
  • 网站设置默认主页建设信息网怎么进入
  • 南宁网站设计公司排名东营新闻综合频道在线直播
  • wordpress分类信息 模板下载宝安网站 建设seo信科
  • 中卫网站推广外包服务上海营业执照查询系统
  • 资金盘网站开发公司哪里好用dw怎麼做网站
  • 网站开发感想wordpress ldap
  • 哪个网站专门做二手的做外汇网站代理赚钱吗
  • 网站建设服务器配置用dedecms 做门户网站
  • 做网站的方法及措施百度网盘app
  • 网站开发多少人工作服定制无锡帛裳 服饰实力
  • 网站备案怎么取消上海app开发制作
  • 同城网站建设潍坊网站建设咨询
  • 网站产品管理模块中国建设信用卡网站首页
  • 郑州百度网站建设做网站要分几部分完成
  • 付费内容网站百度学术查重
  • 做网站推广引流效果好吗成都全案设计公司
  • 365网站深圳龙江网站设计
  • 建设网站策划案国家正规网站查询
  • wordpress 下拉刷新六安网站优化
  • 廊坊哪里有做网站建设的网站建设方案 百度文库
  • 网站开发建设步骤设迹官网
  • 盛成广告传媒做网站的卖芒果的网络营销策划