当前位置: 首页 > wzjs >正文

做贸易的网站宣传片拍摄大纲

做贸易的网站,宣传片拍摄大纲,上海智能网站建设平台,义乌设计工作室文章目录 1. 内置损失函数2. 继承 nn.Module 自定义损失函数3. 继承 autograd.Function 自定义损失函数3. 三种不同方式实现 MSE 实验 PyTorch 除了内置损失函数,还可以自定义损失函数。我们以均方误差为例来讲解 PyTorch 中损失函数的使用方法。均方误差(Mean Squa…

文章目录

  • 1. 内置损失函数
  • 2. 继承 nn.Module 自定义损失函数
  • 3. 继承 autograd.Function 自定义损失函数
  • 3. 三种不同方式实现 MSE 实验

PyTorch 除了内置损失函数,还可以自定义损失函数。我们以均方误差为例来讲解 PyTorch 中损失函数的使用方法。均方误差(Mean Squared Error, MSE)是预测值 x = ( x 1 , x 2 , . . . , x n ) x=(x_1, x_2, ..., x_n) x=(x1,x2,...,xn) 与真实值 y = ( y 1 , y 2 , . . . , y n ) y=(y_1, y_2, ..., y_n) y=(y1,y2,...,yn) 之差的平方和的平均值,数学公式如下:
MSE = 1 n ∑ i = 1 n ( x i − y i ) 2 \text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (x_i - y_i)^2 MSE=n1i=1n(xiyi)2计算 MSE \text{MSE} MSE 损失函数对输入向量 x x x 的梯度如下:
d M S E d x = 2 n ( x − y ) \dfrac{dMSE}{dx} = \dfrac{2}{n}(x-y) dxdMSE=n2(xy)具体而言,
d M S E d x i = 2 n ( x i − y i ) \dfrac{dMSE}{dx_i} = \dfrac{2}{n}(x_i - y_i) dxidMSE=n2(xiyi)

1. 内置损失函数

PyTorch 在 torch.nn 模块中提供了均方误差函数:

import torch.nn as nnmse_loss = nn.MSELoss()

2. 继承 nn.Module 自定义损失函数

只需实现 forward() 方法,无需手动编写反向传播(自动求导引擎处理)。自定义损失函数类实例化后直接调用即可计算损失值。
继承 nn.Module 自定义均方误差损失函数的实现代码如下:

import torch.nn as nnclass MSELossV1(nn.Module):def __init__(self):super().__init__()def forward(self, input, target):squared_diff = (input - target) ** 2n = squared_diff.numel()return squared_diff.sum() / n

3. 继承 autograd.Function 自定义损失函数

在 PyTorch 中,torch.autograd.Function 是一个用于定义自定义自动求导操作的类。它允许用户实现自定义的前向传播forward 和反向传播 backward 逻辑。这对于实现非标准操作、自定义激活函数、或在某些特殊场景中替代现有 PyTorch 操作非常有用。
torch.autograd.Function 实现自定义求导,需要实现 forwardbackward 方法,这意味着需要自己手算反向传播求梯度公式。
ctx 是上下文对象,用于在 forward 和 backward 之间传递数据。常用方法是:

  • ctx.save_for_backward(*tensors):保存张量供反向传播使用
  • ctx.saved_tensors:获取保存的张量

forward 方法返回计算结果,而 backward 返回对每个输入的梯度。
Function.apply(input) 是调用自定义函数的标准方式。继承 autograd.Function 自定义均方误差损失函数的实现代码如下:

import torch
from torch.autograd import Functionclass MSELossV2(Function):@staticmethoddef forward(ctx, input, target):squared_diff = (input - target) ** 2n = squared_diff.numel()ctx.save_for_backward(input, target)return squared_diff.sum() / n@staticmethoddef backward(ctx, grad_output):input, target = ctx.saved_tensorsn = input.numel()grad_input = 2 / n * (input - target) * grad_outputreturn grad_input, None

在 PyTorch 的 torch.autograd.Function 中,backward 方法的返回值数量和顺序必须与 forward 方法的输入参数一一对应。例如,forward 传入的参数为 input 和 target,则 backward 也要返回两个梯度(例如 grad_input, None)。
每个输入参数都需要对应一个梯度输出:

  • 如果输入参数是张量且需要梯度(requires_grad=True),返回其梯度
  • 如果输入参数是整数或不需要梯度的张量,返回 None

backward 中的 grad_output 是一个张量,其形状与当前操作的输出张量一致。它表示在反向传播时,每个输出元素的梯度乘以一个
权重(即 grad_output 的值),从而影响输入梯度的计算。

  • 如果 grad_output 未指定(默认为 None),PyTorch 会假设输出是一个标量,并自动使用全 1 的权重,即 torch.ones_like(output)
  • 如果输出是向量或张量,则必须显式指定 grad_output,否则会报错

grad_output 的使用总结如下:

场景grad_output 的作用示例
标量输出默认为 1,无需显式指定loss.backward()
向量输出必须指定,形状与输出一致y.backward(torch.ones_like(y))
多输出每个输出对应一个 grad_outputgrad_output=[v1, v2]
自定义反向传播传递上层梯度,计算输入梯度backward(ctx, grad_output)

代码示例:

import torchx = torch.tensor([2.0], requires_grad=True)
у = x**2
у.backward()   # 等价于 y.backward(torch.tensor(1.0))
print(x.grad)  # 输出 4.0 (dy/dx = 2x = 4)x2 = torch.tensor([1.0, 2.0], requires_grad=True)
y = x2 * 2
grad_output = torch.tensor([1.0, 0.5])  # 权重分别为 1 和 0.5
y.backward(grad_output)  # x2_grad = tensor([2., 1.]) (grad_output · dy/dx = [1.0, 0.5] · [2., 2.] = [2., 1.])

3. 三种不同方式实现 MSE 实验

实验代码如下:

import torch
import torch.nn as nn
from torch.autograd import Functionclass MSELossV1(nn.Module):def __init__(self):super().__init__()def forward(self, input, target):squared_diff = (input - target) ** 2n = squared_diff.numel()return squared_diff.sum() / nclass MSELossV2(Function):@staticmethoddef forward(ctx, input, target):squared_diff = (input - target) ** 2n = squared_diff.numel()ctx.save_for_backward(input, target)return squared_diff.sum() / n@staticmethoddef backward(ctx, grad_output):input, target = ctx.saved_tensorsn = input.numel()grad_input = 2 / n * (input - target) * grad_outputreturn grad_input, Noneif __name__ == "__main__":mse_loss = nn.MSELoss()mse_loss_v2 = MSELossV1()x = torch.tensor([[1.0, 2.0, 3.0],[4.0, 5.0, 6.0],[7.0, 8.0, 9.0]], requires_grad=True)x2 = x.detach().clone().requires_grad_(True)x3 = x.detach().clone().requires_grad_(True)y = torch.tensor([[0.5, 2.5, 2.0],[3.5, 5.5, 5.0],[6.5, 8.5, 8.0]])loss = mse_loss(x, y)loss2 = mse_loss_v2(x2, y)loss3 = MSELossV2.apply(x3, y)print(f"loss: {loss}, loss2: {loss2}, loss3: {loss3}")loss.backward()loss2.backward()loss3.backward()print(f"x.grad: \n{x.grad}\n x2.grad: \n{x2.grad}\n x3.grad: \n{x3.grad}")

运行结果如下:
在这里插入图片描述
从图中可以看出,三种不同方式实现的均方误差损失函数的计算结果一致。

http://www.dtcms.com/wzjs/538640.html

相关文章:

  • 旅游网站前台怎么做免费餐饮管理系统
  • 外贸企业网站开发新品手机上市
  • 在哪里建网站湖北网站设计流程
  • 网站后台上传软件搭建网站原理
  • 分类信息网站模板wordpress 底部登录
  • 丽水网站建设企业网站推广做的比较好的公司
  • 上海建设网站的价格广告优化师怎么学
  • nas搭建wordpress博客网站有做门窗找活的网站吗
  • 网站建设 注意事项龙华建网站
  • 大学生建设什么网站好红酒网站建设方案范本
  • 品牌网站建设h5怎么做流量网站
  • 建设银行网站查询密码怎么设置贷款网站建设
  • 易语言跳到指定网站怎么做自己做网站要固定ip
  • dw网页制作成品下载嘉兴网站推广优化公司
  • 鹿邑建设局官方网站平板电脑可以做网站吗
  • 广州网站建设是什么网站美术视觉效果布局设计
  • 苏州免费模板建站wordpress酷黑主题
  • 汕头建站培训网站建设合同协议
  • 清远网站seo公司做网站能自己找服务器吗
  • 伊春网站推广wordpress网页图片加载很慢
  • 学校网站建设说明书如何做网站不被查
  • 海口 网站开发昆山企业网站建设公司
  • 免费行情软件网站大全入口简述提升关键词排名的方法
  • 网站模板整站资源长春建设厅网站
  • 精品资源共享课程网站建设论文网站托管是什么意思
  • 朝阳做网站东营企业网站排名
  • c 做网站优点短链接生成器官方
  • 可以开发哪些网站专门做视频的网站有哪些
  • 河北网站建设哪家公司好百度搜索网址大全
  • 哪里做公司网站微网站 服务器