当前位置: 首页 > wzjs >正文

wordpress密码邮件旺道seo营销软件

wordpress密码邮件,旺道seo营销软件,查网站域名,seo建站的步骤目录 第1关:Variable 任务描述 编程要求 测试说明 没有伟大的愿望,就没有伟大的天才。——巴尔扎克开始你的任务吧,祝你成功! 第2关:Variable 属性 任务描述 编程要求 测试说明 真正的科学家应当是个幻想家&a…

目录

第1关:Variable

任务描述

编程要求

测试说明

没有伟大的愿望,就没有伟大的天才。——巴尔扎克开始你的任务吧,祝你成功!

第2关:Variable 属性

任务描述

编程要求

测试说明

真正的科学家应当是个幻想家;谁不是幻想家,谁就只能把自己称为实践家。 —— 巴尔扎克开始你的任务吧,祝你成功!

第3关:梯度初探

任务描述

编程要求

测试说明

科学的界限就像地平线一样:你越接近它,它挪得越远。——布莱希特开始你的任务吧,祝你成功!

第4关:梯度进阶

任务描述

编程要求

测试说明

真正的科学家应当是个幻想家;谁不是幻想家,谁就只能把自己称为实践家。 —— 巴尔扎克开始你的任务吧,祝你成功!


第1关:Variable

恭喜大家进入  Pytorch 最为核心的学习——autograd,这是  Pytorch 中区别其他机器学习库的一个重要元素。准备好了吗?让我们一探它的庐山真面目吧!

  • 任务描述

本关任务:本关提供了一个张量变量tensor ,根据所给的张量创建 Variable 变量v,同时要求同学们掌握 Variable 的相关属性,例如如何获得 Variable 的 data 属性。

  • 编程要求

本关涉及的代码文件为 createVariable.py,本次编程任务是补全右侧代码片段中 Begin 至 End 中间的代码,具体要求如下:

根据所给的张量创建 Variable 变量 v。
具体请参见后续测试样例。

  • 测试说明

本关涉及的测试文件为 createVariable.py ,运行用户填写后的程序判断正误。

根据程序的输出判断程序是否正确,若正确则输出下面的预期输出,否则报错。

请注意输出格式及规范。

以下是测试样例:

测试输入:
预期输出:
Variable containing:
 1  4  2
 3  1  4
[torch.FloatTensor of size 2x3]

没有伟大的愿望,就没有伟大的天才。——巴尔扎克
开始你的任务吧,祝你成功!
import torch
from torch.autograd import Variable
tensor = torch.FloatTensor([[1,4,2],[3,1,4]])#/********** Begin *********/
v = Variable(tensor,requires_grad=True)
#/********** End *********/
print(v)

第2关:Variable 属性

本关将介绍 Variable 属性方面的知识,让同学们对其更加熟悉,便于掌握。

  • 任务描述

本关要求掌握Variable 的基本属性及其意义,如requires_grad属性标记着该Variable 是否需要求导。

本关任务:本关提供了一个32位浮点型的张量 x,要求同学们根据 x创建一个Variable类型的变量 y, y是由 x 的平方计算得到,并输出y的Requires Gradiet属性和Gradient属性。

  • 编程要求

本关涉及的代码文件为attributes.py,本次的编程任务是补全右侧代码片段中Begin至End中间的代码,具体要求如下:

创建一个变量  y,由  x 的平方计算得到,并输出;

输出 y 的Requires Gradient属性;

输出 y 的Gradient属性。

具体请参见后续测试样例。

  • 测试说明

测试过程:

本关涉及的测试文件为attributes.py,运行用户填写后的程序判断正误。

根据程序的输出判断程序是否正确,若正确则输出下面的预期输出,否则报错。

请注意输出格式及规范。

以下是测试样例:

测试输入:
预期输出:

Variable containing:
 1
 4
 9
[torch.FloatTensor of size 3]

Requires Gradient : True 
Gradient : None 

真正的科学家应当是个幻想家;谁不是幻想家,谁就只能把自己称为实践家。 —— 巴尔扎克
开始你的任务吧,祝你成功!
import torch
from torch.autograd import Variable
import warnings  
# 忽略特定警告  
warnings.filterwarnings("ignore", message="The .grad attribute of a Tensor that is not a leaf Tensor is being accessed.*") x = torch.FloatTensor([1,2,3])
x = Variable(x, requires_grad=True)#/********** Begin *********/
#创建一个变量 y,由 x 的平方计算得到
y = x * x
#按照要求输出y相应的属性
print(y)
print('Requires Gradient : %s ' % (y.requires_grad))
print('Gradient : %s ' % (y.grad))
#/********** End *********

第3关:梯度初探

接下来让我们一探神秘的梯度求导吧!

  • 任务描述

结合上一关卡所介绍的Variable属性,我们将进一步学习Variable的反向传播函数backward,从而计算出其梯度的大小。

本关任务:

本关提供了一个 Variable 类型的变量x,并将x的 requires_grad设置为True,以便后续的求导操作。在 x 基础上进行相应的运算得到y ,在 y的基础上进行运算得到z,令变量out为 z 的平均值,计算out 的梯度并输出x的梯度值。求导计算的步骤如下所示:

  • 编程要求

本关涉及的代码文件为gradient.py,本次编程任务是补全右侧代码片段中Begin至End中间的代码,具体要求如下:

在 x 基础上进行运算, y = x + 2;

在 y 基础上进行运算, z = y * y * 3;

令变量out为 z 的平均值并输出;

计算 out 的梯度并输出x的梯度值;

具体请参见后续测试样例。

  • 测试说明

测试过程:

本关涉及的测试文件为gradient.py,运行用户填写后的程序判断正误。

根据程序的输出判断程序是否正确,若正确则输出下面的预期输出,否则报错。

请注意输出格式及规范。

以下是测试样例:

测试输入:
预期输出:

output:
 Variable containing:
 40.5000
[torch.FloatTensor of size 1]

Variable containing:
 3.0000
 4.5000
 6.0000
 7.5000
[torch.FloatTensor of size 4]

科学的界限就像地平线一样:你越接近它,它挪得越远。——布莱希特
开始你的任务吧,祝你成功!

import torch
from torch.autograd import Variable x = Variable(torch.Tensor(range(4)), requires_grad=True)
#/********** Begin *********/
#在 x 基础上进行运算, y = x + 2
y = x + 2
#在 y 基础上进行运算, z = y * y * 3
z = y * y * 3
#令变量 out 为 z 的平均值并输出
out = z.mean()#计算 out 的梯度并输出x的梯度值
out.backward(retain_graph=True)
print('output:')
print(out.item())print(x.grad)
#/********** End *********

第4关:梯度进阶

在上一关卡中,我们学习了利用.backward ()对Variable 变量进行反向传播求导,本关将介绍另一种求解梯度的方法——torch.autograd.grad。

  • 任务描述

本关任务:

本关提供了Variable 类型的变量x和Variable 类型的变量y,并将x 和y的requires_grad设置为True以便后续的求导操作。在 x和y的基础上进行运算得到z,利用torch.autograd.grad方法求梯度 dz_dx和dz_dy。

  • 编程要求

本关涉及的代码文件为autograd_grad.py,本次编程任务是补全右侧代码片段中Begin至End中间的代码,具体要求如下:

计算 z = x*x + 3*y;

求梯度 dz_dx和dz_dy 并输出;

具体请参见后续测试样例。

  • 测试说明

测试过程:

本关涉及的测试文件为autograd_grad.py,运行用户填写后的程序判断正误;

根据程序的输出判断程序是否正确,若正确则输出下面的预期输出,否则报错;

请注意输出格式及规范。

以下是测试样例:

dz_dx: 
 (Variable containing:
  2   4   6
  8  10  12
[torch.FloatTensor of size 2x3]
,)
dz_dy: 
 (Variable containing:
 3  3  3
 3  3  3
[torch.FloatTensor of size 2x3]
,)

真正的科学家应当是个幻想家;谁不是幻想家,谁就只能把自己称为实践家。 —— 巴尔扎克
开始你的任务吧,祝你成功!
import torch
from torch.autograd import Variablex = Variable(torch.unsqueeze(torch.linspace(1, 6, 6), dim = 1).view(2, 3), requires_grad=True)y = Variable(torch.Tensor(2, 3).uniform_(-1, 1), requires_grad=True)#/********** Begin *********/
#计算 z = x*x + 3*y
z = x*x + 3*y#求dz_dx和dz_dy 并输出
dz_dx = torch.autograd.grad(z, x, grad_outputs=torch.ones_like(z))
dz_dy = torch.autograd.grad(z, y, grad_outputs=torch.ones_like(z))
print("dz_dx: \n",dz_dx)
print("dz_dy: \n",dz_dy)
#/********** End *********/ 

http://www.dtcms.com/wzjs/537299.html

相关文章:

  • 专业建设网站应该怎么做视频网站备案怎么做
  • 德阳高端网站建设东方商易网站开发
  • 政务服务网站建设文档网页制作工具分类
  • 国内做企业英文网站用什么cms学校网站对学校建设的重要性
  • 网站推广咋做的黑龙江seo关键词优化工具
  • 广州好的网站设计公司it运维培训
  • 官方网站制作思路西安流调轨迹公布
  • 做网站有哪个空间做视频免费模板下载网站
  • 网站icp备案怎么写网络营销课程收获
  • dede程序网站如何查看百度蜘蛛wordpress 定时重启
  • 青岛网站建设方案案例下载国家医保服务平台app
  • 西安网站建设总部信息化网站建设有什么用
  • 镇江网站公司免费网页制作工具下载
  • 河南国控建设集团网站网页美工设计说明书
  • 中山建设局网站首页cpanel安装wordpress中文教程
  • 建设电子商务网站考核试卷0基础网站搭建教程
  • 网站克隆下来了然后再怎么做青海住房和城乡建设厅网站
  • 后台做网站的题什么叫做关键词
  • 学校网站的建设目标是什么意思qq群排名优化软件
  • 欧卡乐网站建设中国医院建设协会网站
  • 如何找回网站后台密码网站建设什么因素最重要性
  • 网站建设客户在哪里找常见的站内推广方式有哪几种
  • 关于网站建设的总结合肥网站seo推广
  • 网站设计编辑怎么让百度搜索到自己的网站
  • 高性能网站建设进阶指南百度贴吧官网入口
  • 大流量网站解决访问量网站首页设计html代码
  • 太原公司网站建立wordpress 购买按钮
  • 网站开发公司简介怎么写wordpress搭建两个主题
  • 网站关键词怎么填写如何做免费网络推广
  • 网站建设可行性方案用cms建网站