当前位置: 首页 > wzjs >正文

网站建设 自助建站徐州seo推广

网站建设 自助建站,徐州seo推广,鹤山网站建设易搜互联,wordpress关注功能怎么实现74. 搜索二维矩阵 双层循环遍历法 一、算法逻辑(逐步通顺讲解每一步思路) 该算法的目标是判断一个给定的目标值 target 是否存在于二维矩阵 matrix 中。 题目给定的矩阵有如下两个特性: 每行元素从左到右升序排列; 每行的第一…

 74. 搜索二维矩阵

双层循环遍历法

一、算法逻辑(逐步通顺讲解每一步思路)

该算法的目标是判断一个给定的目标值 target 是否存在于二维矩阵 matrix 中。

题目给定的矩阵有如下两个特性:

  1. 每行元素从左到右升序排列;

  2. 每行的第一个整数大于前一行的最后一个整数(整个矩阵可以视作一个升序的「一维数组」)。

然而,这段代码 没有利用上述性质,而是采取了最简单直接的方式:

✅ 1️⃣ 获取矩阵维度

M = len(matrix):总行数;
N = len(matrix[0]):每行列数。

✅ 2️⃣ 遍历整个矩阵

使用两个嵌套循环,逐个元素遍历二维数组中的每一项:

  • 外层循环遍历每一行;

  • 内层循环遍历每一列。

✅ 3️⃣ 逐个比对元素值

如果当前元素 matrix[i][j] 等于 target,直接返回 True;否则继续查找。

✅ 4️⃣ 未找到则返回 False

所有元素遍历完后未找到目标值,返回 False


二、核心点总结

该算法核心非常简单直接:

  • 暴力穷举法:遍历整个二维数组逐个比对元素;

  • 未利用矩阵的有序特性,没有进行任何剪枝或优化;

  • ✅ 实现简单,容易理解;

  • ❌ 对于大数据量输入效率较低。

换句话说,这是最基础的解法(Baseline),适合初学者理解,但在面试或实际场景中不推荐使用

class Solution:def searchMatrix(self, matrix: List[List[int]], target: int) -> bool:M, N = len(matrix), len(matrix[0])for i in range(M):for j in range(N):if matrix[i][j] == target:return Truereturn False

三、时间复杂度分析

共 M 行,每行 N 个元素:

✅ 时间复杂度为 O(M × N)


四、空间复杂度分析

该算法仅使用了常数级别的辅助变量(i, j, M, N),不依赖任何额外数据结构或递归栈:

✅ 空间复杂度为 O(1)


✅ 总结一句话

这是一种最朴素的暴力搜索解法,时间复杂度为 O(M×N),空间复杂度 O(1),实现简单但未利用矩阵的有序性质,适合新手理解,不适合实际使用或面试场景,可进一步优化为「逐行二分查找」或「二维 -> 一维映射 + 二分」的高效解法。

http://www.dtcms.com/wzjs/520098.html

相关文章:

  • 山西网站制作优化网站排名工具
  • 厦门做网站xm37优化关键词技巧
  • 个人可以做企业网站黑帽seo技术
  • 轻设计 让网站灵敏轻便的6个技巧兰州网络推广优化怎样
  • 徐州市建设银行网站谷歌地球
  • 海南网站建设网站开发小程序app南宁网站优化公司电话
  • 教学网站怎么做seo搜索引擎优化题库
  • 怎么可以自己做网站被百度收到aso优化的主要内容
  • 成都门户网站易推广
  • 天津建设工程信息网查询东莞网站推广优化公司
  • 可以做录音兼职的网站武汉百度推广代运营
  • 校园网站策划书专业网站优化外包
  • 网站版式布局成品网站源码在线看
  • 文明网站建设管理培训心得网站怎么才能被百度收录
  • 佛山网站建设咨询揭阳市seo上词外包
  • 长春seo排名外包seo关键词排名优化系统源码
  • 一建报名时间2023官网seo关键词排名系统
  • org后缀的网站成都推广系统
  • wordpress拖曳式建站百度竞价推广运营
  • 网站租金可以做办公费吗每日新闻摘要30条
  • 合肥网站开发建设百度站长平台快速收录
  • 佛山建站软件东莞关键词seo
  • 广东购物网站建设汽车网络营销推广方案
  • 如何用百度搜自己做的网站百度云盘网页登录入口
  • 网站建设教程照片seo的基础是什么
  • 免费b站在线观看人数在哪里品牌营销策略研究
  • 青岛网站建设有限公司万网域名管理平台
  • b2c网站的认识西安网站关键词排名
  • 专业做鞋子的网站吗产品市场营销策划方案
  • 怎么做网站认证研究生培训机构排名