当前位置: 首页 > wzjs >正文

淘宝网作图做网站营销客户管理系统

淘宝网作图做网站,营销客户管理系统,wordpress 微信绑定,政府网站建设和数据开放共享以下是一个使用PyTorch实现简单图像识别(基于MNIST手写数字数据集)的完整代码示例,包含数据加载、模型定义、训练和预测全流程: import torch import torch.nn as nn import torch.optim as optim import torchvision import torc…

以下是一个使用PyTorch实现简单图像识别(基于MNIST手写数字数据集)的完整代码示例,包含数据加载、模型定义、训练和预测全流程:

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt# 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")# ----------------------
# 1. 数据准备
# ----------------------
transform = transforms.Compose([transforms.RandomRotation(10),       # 数据增强:随机旋转transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))  # MNIST的均值和标准差
])# 加载数据集
train_set = torchvision.datasets.MNIST(root='./data',train=True,download=True,transform=transform
)test_set = torchvision.datasets.MNIST(root='./data',train=False,download=True,transform=transform
)# 创建数据加载器
train_loader = DataLoader(train_set, batch_size=64, shuffle=True)
test_loader = DataLoader(test_set, batch_size=1000, shuffle=False)# ----------------------
# 2. 构建神经网络模型
# ----------------------
class SimpleCNN(nn.Module):def __init__(self):super(SimpleCNN, self).__init__()self.conv1 = nn.Conv2d(1, 32, 3, 1)  # 输入通道1,输出通道32,卷积核3x3self.conv2 = nn.Conv2d(32, 64, 3, 1)self.dropout = nn.Dropout2d(0.25)self.fc1 = nn.Linear(9216, 128)      # 全连接层self.fc2 = nn.Linear(128, 10)        # 输出层(10个数字类别)def forward(self, x):x = torch.relu(self.conv1(x))       # 28x28 → 26x26x = torch.max_pool2d(x, 2)          # 26x26 → 13x13x = torch.relu(self.conv2(x))       # 13x13 → 11x11x = torch.max_pool2d(x, 2)          # 11x11 → 5x5x = self.dropout(x)x = torch.flatten(x, 1)            # 展平x = torch.relu(self.fc1(x))x = self.dropout(x)x = self.fc2(x)return xmodel = SimpleCNN().to(device)# ----------------------
# 3. 训练配置
# ----------------------
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)# ----------------------
# 4. 训练循环
# ----------------------
def train(epoch):model.train()train_loss = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()train_loss += loss.item()if batch_idx % 100 == 0:print(f"Train Epoch: {epoch} [{batch_idx * len(data)}/{len(train_loader.dataset)} "f"({100. * batch_idx / len(train_loader):.0f}%)]\tLoss: {loss.item():.6f}")avg_loss = train_loss / len(train_loader)return avg_loss# ----------------------
# 5. 测试函数
# ----------------------
def test():model.eval()test_loss = 0correct = 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()pred = output.argmax(dim=1, keepdim=True)correct += pred.eq(target.view_as(pred)).sum().item()test_loss /= len(test_loader)accuracy = 100. * correct / len(test_loader.dataset)print(f"\nTest set: Average loss: {test_loss:.4f}, Accuracy: {correct}/{len(test_loader.dataset)} "f"({accuracy:.2f}%)\n")return accuracy# ----------------------
# 6. 执行训练
# ----------------------
epochs = 5
train_losses = []
test_accuracies = []for epoch in range(1, epochs + 1):loss = train(epoch)accuracy = test()train_losses.append(loss)test_accuracies.append(accuracy)# ----------------------
# 7. 可视化结果
# ----------------------
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.plot(train_losses, label='Training Loss')
plt.title('Training Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()plt.subplot(1, 2, 2)
plt.plot(test_accuracies, label='Test Accuracy')
plt.title('Test Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy (%)')
plt.legend()
plt.show()# ----------------------
# 8. 保存和加载模型
# ----------------------
torch.save(model.state_dict(), "mnist_cnn.pth")# 加载模型示例:
# loaded_model = SimpleCNN().to(device)
# loaded_model.load_state_dict(torch.load("mnist_cnn.pth"))# ----------------------
# 9. 单张图片预测
# ----------------------
def predict_image(img):model.eval()img = img.unsqueeze(0).to(device)  # 添加batch维度with torch.no_grad():output = model(img)_, predicted = torch.max(output.data, 1)return predicted.item()# 测试单张图片
sample_data, sample_label = next(iter(test_loader))
sample_img = sample_data[0].cpu()
prediction = predict_image(sample_img)plt.imshow(sample_img.squeeze(), cmap='gray')
plt.title(f"True: {sample_label[0]}, Predicted: {prediction}")
plt.show()

代码说明:

数据准备:

  • 使用MNIST手写数字数据集(0-9共10类)

  • 应用数据增强(随机旋转)和标准化处理

  • 创建训练集和测试集的DataLoader

模型结构:

  • 简单CNN架构:2个卷积层 + 2个全连接层
  • 使用ReLU激活函数和MaxPooling
  • 添加Dropout防止过拟合

训练配置:

  • 交叉熵损失函数
  • Adam优化器
  • 5个训练周期(可调整)

可视化:

  • 绘制训练损失曲线
  • 绘制测试准确率曲线

扩展功能:

  • 模型保存与加载
  • 单张图片预测演示

运行结果示例:

Using device: cuda
Train Epoch: 1 [0/60000 (0%)]  Loss: 2.307364
Train Epoch: 1 [6400/60000 (11%)] Loss: 0.362455
...
Test set: Average loss: 0.0512, Accuracy: 9853/10000 (98.53%)

改进建议:

  1. 使用更复杂的网络结构(如ResNet)
  2. 增加数据增强方法(随机缩放、平移)
  3. 尝试不同的优化器(RMSProp)和学习率调度
  4. 增加训练轮次(epochs=10+)
  5. 使用预训练模型进行迁移学习

这个示例可以在普通GPU上1分钟内完成训练,达到98%+的测试准确率。要应用于其他图像分类任务(如CIFAR-10),只需修改数据集和调整网络输入尺寸即可。

http://www.dtcms.com/wzjs/514954.html

相关文章:

  • 济南网站建设制作设计网站建设推广服务
  • 宿迁房产网备案查询榆林百度seo
  • wordpress模板结构详解seo是什么意思职业
  • 如何做自己的公司网站中国站长站
  • 自建网站的好处上海全网营销推广
  • 我想做直播网站该怎么做买外链网站
  • 帝国cms 关闭网站做一个网站要多少钱
  • 哈尔滨最专业的网站建设软件开发公司排名
  • 品网站建设公司搜索引擎排名2021
  • 哪些网站做二手挖机易观数据app排行
  • 做美食网站的图片大全张雷明任河南省委常委
  • 百度收录链接提交入口百色seo快速排名
  • 没有备案的网站使用微信雅虎搜索引擎中文版
  • 汉口网站推广公司厦门人才网官方网站
  • 有没有做外贸的网站啊百度投放广告流程
  • 投资网站建设会计培训班推荐
  • 西安网络运营公司有哪些seo关键词优化
  • 天津网站建设招聘网站建设公司是怎么找客户
  • 产品展示型网站头条新闻今日头条官方版本
  • 网店设计素材seo优化sem推广
  • 网站怎么建设商城地推接单平台app排行榜
  • 台州椒江网站建设网站关键词优化系统
  • 网站 标准什么是网站推广?
  • 本地建站discuz站长之家网站
  • 网站sem优化怎么做东莞网络推广平台
  • 成都服装网站建设北京seo优化服务
  • 湖南网页设计培训网站建设求购买链接
  • 做网站那些好seo优化要做什么
  • 海南省旅游专业网站发展电子商务缺乏强大的专业产业资源做后盾软件推广怎么赚钱
  • 网站制作叫什么制作网站需要多少费用