当前位置: 首页 > wzjs >正文

做网站成都哪家公司最好南京网页搜索排名提升

做网站成都哪家公司最好,南京网页搜索排名提升,邮箱wordpress,wordpress 电商小程序SpringAI框架中的RAG模块详解及应用示例 RAG(Retrieval-Augmented Generation)可以通过检索知识库,克服大模型训练完成后参数冻结的局限性,携带知识让大模型根据知识进行回答。SpringAI框架提供了模块化的API来支持RAG&#xff0…

SpringAI框架中的RAG模块详解及应用示例

RAG(Retrieval-Augmented Generation)可以通过检索知识库,克服大模型训练完成后参数冻结的局限性,携带知识让大模型根据知识进行回答。SpringAI框架提供了模块化的API来支持RAG,主要包括QuestionAnswerAdvisorRetrievalArgumentAdvisor

QuestionAnswerAdvisor

QuestionAnswerAdvisor主要提供便捷简单的RAG流功能,只需指定一些简单的参数即可。例如,假设数据已加载到vectorStore中,可以通过以下方法进行RAG知识库检索:

QuestionAnswerAdvisor questionAnswerAdvisor = QuestionAnswerAdvisor.builder(vectorStore).searchRequest(SearchRequest.builder().similarityThreshold(0.5) // 只返回相似度高于0.5的结果.topK(3) // 只返回前三个结果.filterExpression(newFilterExpressionBuilder().eq("a", "b").build()) // 只检索 a==b 的文档.build()).build();ChatClient chatClient = ChatClient.builder(openAiChatModel).defaultOptions(OpenAiChatOptions.builder().model("gpt-3.5-turbo").build()).build();ChatResponse response = chatClient.prompt().advisors(questionAnswerAdvisor).user(u -> u.text("你好")).call().chatResponse();

如果构造advisor时未指定过滤条件,构建请求时也能动态添加:

chatClient.prompt().user(u -> u.text("hello")).advisors(a -> a.param(QuestionAnswerAdvisor.FILTER_EXPRESSION, "a==b")).call().chatResponse();

这里的lambda表达式中的a是一个AdvisorContext.Builder实例,param()用于向AdvisorContext中添加参数,这些参数在advisor链中共享,advisor会自动调用相应方法完成知识库检索和拼接。

RetrievalArgumentAdvisor

RetrievalArgumentAdvisor提供了更丰富的功能,允许程序员定义整个RAG过程的操作,包括检索前预处理、检索、检索后处理以及生成。

简单RAG实现示例

Advisor retrievalAugmentationAdvisor = RetrievalAugmentationAdvisor.builder().documentRetriever(VectorStoreDocumentRetriever.builder().similarityThreshold(0.50).vectorStore(vectorStore).build()).build();String answer = chatClient.prompt().advisors(retrievalAugmentationAdvisor).user(question).call().content();

高级RAG流程

检索前预处理
  1. CompressionQueryTransformer:对用户提问进行压缩,适用于对话历史较长且当前问题基于上下文的场景。示例:
Query query = Query.builder().text("And what is its second largest city?").history(newUserMessage("What is the capital of Denmark?"),newAssistantMessage("Copenhagen is the capital of Denmark.")).build();QueryTransformer transformer = CompressionQueryTransformer.builder().chatClientBuilder(chatClientBuilder).build();Query transformedQuery = transformer.transform(query);

也可由advisor自动完成:

CompressionQueryTransformer compressionQueryTransformer = CompressionQueryTransformer.builder().chatClientBuilder(ChatClient.builder(openAiChatModel)).build();RetrievalAugmentationAdvisor retrievalAugmentationAdvisor = RetrievalAugmentationAdvisor.builder().documentRetriever(VectorStoreDocumentRetriever.builder().build()).queryTransformers(compressionQueryTransformer).build();ChatClient.builder(openAiChatModel).build().prompt().user(u -> u.text("中国第二大的城市是哪里")).messages(newUserMessage("中国首都城市是哪里")).messages(newAssistantMessage("北京")).advisors(retrievalAugmentationAdvisor).call().chatResponse();
  1. RewriteQueryTransformer:使用大语言模型重写用户输入,适合语义模糊或冗长的查询。
QueryTransformer queryTransformer = RewriteQueryTransformer.builder().chatClientBuilder(chatClientBuilder).build();
  1. TranslationQueryTransformer:翻译用户查询为目标语言(通常为嵌入模型支持的语言)。
QueryTransformer transformer = TranslationQueryTransformer.builder().chatClientBuilder(chatClientBuilder).targetLanguage("english").build();
  1. MultiQueryExpander:多查询扩展器,将原始查询扩展为多个不同形式的查询以获取更多相关结果。
MultiQueryExpander expander = MultiQueryExpander.builder().chatClientBuilder(chatClientBuilder).numberOfQueries(3) // 生成三个查询.includeOriginal(false) // 不包含原始查询.build();
检索

负责从数据库中检索最相关文档。

VectorStoreDocumentRetriever vectorStoreDocumentRetriever = VectorStoreDocumentRetriever.builder().vectorStore(vectorStore).topK(4) // 返回最相关的4个.filterExpression(newFilterExpressionBuilder().eq("a", "b").build()) // 过滤条件:a==b.similarityThreshold(0.4) // 只返回相关度大于0.4的文档.build();List<Document> documents = vectorStoreDocumentRetriever.retrieve(newQuery("What is the main character of the story?"));

同样可以交由advisor自动完成并最终展示结果。

检索后处理

解决文档内容过多导致的信息丢失、模型上下文长度限制、内容噪声或重复问题。常见操作包括根据相关性重新排序文档、删除无关或重复文档、压缩文档内容以减少干扰。

生成

根据用户输入和最终检索到的文档生成回答。

ContextualQueryAugmenter将检索到的相关内容拼接到用户提问中,示例:

ContextualQueryAugmenter contextualQueryAugmenter = ContextualQueryAugmenter.builder().allowEmptyContext(false) // 是否允许检索提供空内容.build();
  • .allowEmptyContext(false)时,若无检索内容,模型通常不会回答或回答不知道。
  • .allowEmptyContext(true)时,即使检索内容为空,也会尝试回答。

ContextualQueryAugmenter主要做以下工作:

  • 检查检索结果是否为空
  • 非空时,拼接检索结果字符串并注入提示词模板变量(如{{retrievedDocs}}
  • 为空且.allowEmptyContext(false)时,设置空变量并指示模型“不要根据已有知识回答”
  • 为空且.allowEmptyContext(true)时,放行不插入上下文内容

以上即为SpringAI框架中RAG模块的详细介绍及使用示例,涵盖从简单到复杂的多种应用场景,帮助开发者灵活构建基于知识库的问答系统。

http://www.dtcms.com/wzjs/513678.html

相关文章:

  • 彩票系统开发搭建彩票网站服务器安全怎么做江苏seo
  • 做网站要不要用控件最近新闻报道
  • 宁波专业网站制作服务南宁百度关键词推广
  • 网站建设信息稿百度关键词优化排名技巧
  • 数据库在网站建设中的作用seminar
  • 百度网站推广找谁做百度新闻网页
  • 各大城市网站哪里做专门代写平台
  • 刷网站关键词排名原理app推广平台有哪些
  • 能上外国网站dns市场调研报告800字
  • 焦作做网站哪家好提高工作效率图片
  • 黄岩做网站公司电话淘宝运营培训机构
  • 外贸产品网站建设seo免费教程
  • 做视频网站需要什么服务器配置seo搜索引擎招聘
  • 网站空间费用十大免费软文推广平台
  • c可以做网站么个人网站建站教程
  • 平顶山 网站建设公司百度关键词排名点击器
  • 邯郸专业做网站哪里有百度总部
  • 百度云网站建设上往建站
  • 微山县建设.局网站白云区最新疫情
  • 门户网站后台管理系统模板最好的免费建站网站
  • 黑龙江省建设银行网站百度关键词价格怎么查询
  • 北京工信部网站备案查询昆明百度推广优化
  • 宁波建站模板源码2022磁力链接搜索引擎推荐
  • 电商商城网站建设app下载推广
  • 阜阳网站建设公司网页seo优化
  • 深圳那家做网站好如何检测网站是否安全
  • 网络营销专业培训学校win优化大师怎么样
  • 网站制作公司优势实体店引流推广方法
  • 怎样做网站的源代码网站推广的基本方法有哪些
  • 烟台建网站哪家好网红推广