当前位置: 首页 > wzjs >正文

现在帮别人做网站赚钱不中国关键词

现在帮别人做网站赚钱不,中国关键词,湛江网站建设开发,如何制作app软件下载EMD-SSA-VMD-LSTM混合模型 一、环境配置与依赖二、数据生成(示例数据)三、多级信号分解1. 经验模态分解(EMD)2. 奇异谱分析(SSA)3. 变分模态分解(VMD) 四、数据预处理1. 归一化处理2…

EMD-SSA-VMD-LSTM混合模型

  • 一、环境配置与依赖
  • 二、数据生成(示例数据)
  • 三、多级信号分解
    • 1. 经验模态分解(EMD)
    • 2. 奇异谱分析(SSA)
    • 3. 变分模态分解(VMD)
  • 四、数据预处理
    • 1. 归一化处理
    • 2. 数据集构建
  • 五、混合LSTM模型
    • 1. 模型架构
    • 2. 模型训练
  • 六、预测与结果重构
    • 1. 多步预测
    • 2. 结果反归一化
  • 七、性能评估与可视化
    • 1. 评估指标
    • 2. 结果可视化
  • 八、完整数据流说明
  • 九、参数调优建议
  • 十、扩展方向
  • 源码说明

以下是使用Python实现EMD-SSA-VMD-LSTM混合模型进行时间序列预测的完整代码,结合经验模态分解(EMD)、奇异谱分析(SSA)、变分模态分解(VMD)与LSTM深度学习模型。该方案适用于复杂非平稳信号的预测任务,代码包含数据生成、多级分解、模型构建和结果可视化。


一、环境配置与依赖

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from PyEMD import EMD
from vmdpy import VMD
from scipy.linalg import hankel, svd
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_absolute_error, mean_squared_error
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader# 设置随机种子保证可复现性
np.random.seed(42)
torch.manual_seed(42)

二、数据生成(示例数据)

def generate_complex_signal(length=1000):"""生成含多成分的非平稳信号"""t = np.linspace(0, 10, length)# 趋势项trend = 0.02 * t**2 + 0.1 * t# 周期成分seasonal1 = 1.5 * np.sin(2 * np.pi * 0.8 * t)seasonal2 = 0.8 * np.cos(2 * np.pi * 2.5 * t)# 脉冲噪声impulse = np.zeros(length)impulse[np.random.choice(length, 20)] = np.random.uniform(-3, 3, 20)# 高斯噪声noise = 0.3 * np.random.randn(length)return trend + seasonal1 + seasonal2 + impulse + noise# 生成数据并可视化
data = generate_complex_signal()
plt.figure(figsize=(12,4))
plt.plot(data, color='darkblue')
plt.title("Generated Non-stationary Signal")
plt.show()

三、多级信号分解

1. 经验模态分解(EMD)

def emd_decomposition(signal):emd = EMD()imfs = emd(signal)return imfsimfs_emd = emd_decomposition(data)
print(f"EMD分解得到 {imfs_emd.shape[0]} 个IMF分量")

2. 奇异谱分析(SSA)

def ssa_decomposition(signal, window=30, rank=3):"""奇异谱分析核心函数"""# 构建轨迹矩阵L = windowK = len(signal) - L + 1X = hankel(signal[:L], signal[L-1:])# 奇异值分解U, S, VT = svd(X, full_matrices=False)# 选择主成分重构X_rank = (U[:, :rank] * S[:rank]) @ VT[:rank, :]# 对角平均化reconstructed = np.zeros_like(signal)for i in range(len(signal)):X_diag = np.diagonal(X_rank, offset=-(L-1-i))reconstructed[i] = X_diag.mean() if X_diag.size > 0 else 0return reconstructed# 对每个EMD-IMF执行SSA分解
components_ssa = []
for imf in imfs_emd:ssa_comp = ssa_decomposition(imf, window=30, rank=3)components_ssa.append(ssa_comp)

3. 变分模态分解(VMD)

def vmd_decomposition(signal, alpha=2000, K=4):u, _, _ = VMD(signal, alpha=alpha, tau=0, K=K, DC=0, init=1, tol=1e-7)return u# 对SSA结果进行VMD分解
final_components = []
for comp in components_ssa:vmd_comps = vmd_decomposition(comp, K=2)final_components.extend(vmd_comps)# 合并所有分量
all_components = np.vstack(final_components)
print(f"总分解分量数: {all_components.shape[0]}")

四、数据预处理

1. 归一化处理

scalers = []
scaled_components = []
for comp in all_components:scaler = MinMaxScaler(feature_range=(-1, 1))scaled = scaler.fit_transform(comp.reshape(-1, 1)).flatten()scaled_components.append(scaled)scalers.append(scaler)scaled_components = np.array(scaled_components)

2. 数据集构建

class HybridDataset(Dataset):def __init__(self, components, lookback=60, horizon=1):self.components = componentsself.lookback = lookbackself.horizon = horizondef __len__(self):return self.components.shape[1] - self.lookback - self.horizon + 1def __getitem__(self, idx):x = self.components[:, idx:idx+self.lookback].T  # (lookback, n_components)y = self.components[:, idx+self.lookback:idx+self.lookback+self.horizon].Treturn torch.FloatTensor(x), torch.FloatTensor(y)lookback = 60
horizon = 1
dataset = HybridDataset(scaled_components, lookback, horizon)
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)

五、混合LSTM模型

1. 模型架构

class MultiScaleLSTM(nn.Module):def __init__(self, input_size, hidden_size=128, output_size=1):super().__init__()# 特征提取层self.lstm1 = nn.LSTM(input_size, hidden_size, batch_first=True)self.dropout1 = nn.Dropout(0.3)# 时序预测层self.lstm2 = nn.LSTM(hidden_size, hidden_size//2, batch_first=True)self.dropout2 = nn.Dropout(0.2)# 输出层self.fc = nn.Linear(hidden_size//2, output_size)def forward(self, x):# 输入形状: (batch_size, seq_len, input_size)out, (h, c) = self.lstm1(x)out = self.dropout1(out)out, _ = self.lstm2(out)out = self.dropout2(out[:, -1, :])return self.fc(out)

2. 模型训练

model = MultiScaleLSTM(input_size=scaled_components.shape[0])
criterion = nn.MSELoss()
optimizer = torch.optim.AdamW(model.parameters(), lr=0.001, weight_decay=1e-4)# 训练循环
for epoch in range(100):total_loss = 0for x, y in dataloader:optimizer.zero_grad()pred = model(x)loss = criterion(pred, y.squeeze())loss.backward()optimizer.step()total_loss += loss.item()print(f"Epoch {epoch+1}/100 | Loss: {total_loss/len(dataloader):.4f}")

六、预测与结果重构

1. 多步预测

def recursive_forecast(model, initial_seq, steps=50):current_seq = initial_seq.clone()predictions = []for _ in range(steps):with torch.no_grad():pred = model(current_seq.unsqueeze(0))predictions.append(pred.numpy()[0][0])# 更新输入序列current_seq = torch.cat([current_seq[1:], pred.unsqueeze(0)])return np.array(predictions)# 获取初始序列
test_input = scaled_components[:, -lookback:]
test_input = torch.FloatTensor(test_input.T)  # (lookback, n_components)# 执行预测
pred_steps = 50
prediction = recursive_forecast(model, test_input, pred_steps)

2. 结果反归一化

# 重构所有分量预测
pred_components = []
for i in range(len(scalers)):pred_scaled = prediction * 0  # 初始化pred_scaled[i::len(scalers)] = prediction  # 分量位置插值pred_components.append(scalers[i].inverse_transform(pred_scaled.reshape(-1, 1)))# 合成最终结果
final_pred = np.sum(pred_components, axis=0).flatten()# 获取真实值
true_values = data[-pred_steps:]

七、性能评估与可视化

1. 评估指标

mae = mean_absolute_error(true_values, final_pred)
rmse = np.sqrt(mean_squared_error(true_values, final_pred))
print(f"MAE: {mae:.4f}")
print(f"RMSE: {rmse:.4f}")

2. 结果可视化

plt.figure(figsize=(12,6))
plt.plot(true_values, label='True', marker='o', linestyle='--')
plt.plot(final_pred, label='Predicted', marker='x', linewidth=2)
plt.fill_between(range(len(final_pred)), final_pred - 1.96*rmse, final_pred + 1.96*rmse, alpha=0.2, color='orange')
plt.title("EMD-SSA-VMD-LSTM Multi-step Prediction")
plt.legend()
plt.grid(True)
plt.show()

八、完整数据流说明

步骤技术实现数学表达
信号生成合成趋势项+周期项+噪声 x ( t ) = ∑ i = 1 n a i f i ( t ) + ϵ ( t ) x(t) = \sum_{i=1}^{n} a_i f_i(t) + \epsilon(t) x(t)=i=1naifi(t)+ϵ(t)
EMD分解自适应分解非平稳信号 x ( t ) = ∑ k = 1 K c k ( t ) + r ( t ) x(t) = \sum_{k=1}^{K} c_k(t) + r(t) x(t)=k=1Kck(t)+r(t)
SSA分解轨迹矩阵SVD分解 X = U Σ V T \mathbf{X} = \mathbf{U\Sigma V}^T X=UΣVT
VMD分解变分模态优化分解 min ⁡ { u k } , { ω k } ∑ k ∥ ∂ t [ u k ( t ) e − j ω k t ] ∥ 2 2 \min_{\{u_k\},\{\omega_k\}} \sum_k \|\partial_t[u_k(t)e^{-j\omega_k t}]\|_2^2 {uk},{ωk}minkt[uk(t)ejωkt]22
特征融合多分量时序对齐 X stack = [ C 1 T ; C 2 T ; … ; C n T ] \mathbf{X}_{\text{stack}} = [\mathbf{C}_1^T; \mathbf{C}_2^T; \dots; \mathbf{C}_n^T] Xstack=[C1T;C2T;;CnT]
LSTM建模门控机制时序建模 f t = σ ( W f ⋅ [ h t − 1 , x t ] + b f ) f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f) ft=σ(Wf[ht1,xt]+bf)
结果重构逆归一化加权求和 y ^ = ∑ k = 1 K scaler k − 1 ( c ^ k ) \hat{y} = \sum_{k=1}^{K} \text{scaler}_k^{-1}(\hat{c}_k) y^=k=1Kscalerk1(c^k)

九、参数调优建议

参数优化策略典型值范围
EMD最大IMF数根据信号复杂度调整5-10
SSA窗口长度取1/3周期长度20-50
VMD模态数(K)频谱分析确定3-6
LSTM隐藏层防止过拟合64-256
学习率余弦退火调整1e-4~1e-3
输入序列长度覆盖主要周期60-120

十、扩展方向

  1. 自适应分解

    # 自动确定VMD的K值
    from vmdpy import VMD
    def auto_vmd(signal, max_K=8):for K in range(3, max_K+1):u, _, _ = VMD(signal, alpha=2000, K=K)if np.any(np.isnan(u)):return K-1return max_K
    
  2. 概率预测

    # 修改输出层为分位数回归
    self.fc = nn.Linear(hidden_size//2, 3)  # 输出3个分位数
    
  3. 在线学习

    # 增量训练机制
    def online_update(model, new_data):model.train()optimizer.zero_grad()outputs = model(new_data)loss = criterion(outputs, targets)loss.backward()optimizer.step()
    

源码说明

  1. 数据兼容性

    • 支持CSV输入:修改generate_complex_signal()pd.read_csv()
    • 多变量扩展:调整输入维度为(n_features, seq_len)
  2. 性能优化

    • 启用CUDA加速:model.to('cuda')
    • 使用混合精度训练:scaler = torch.cuda.amp.GradScaler()
  3. 工业级部署

    # 模型保存与加载
    torch.save(model.state_dict(), 'multiscale_lstm.pth')
    model.load_state_dict(torch.load('multiscale_lstm.pth'))
    

该方案通过三级分解(EMD-SSA-VMD)充分提取信号多尺度特征,结合深度LSTM建模复杂时序依赖,在非平稳信号预测中展现出显著优势。实际应用时需根据数据特性调整分解参数与模型结构,并通过误差分析持续优化。

http://www.dtcms.com/wzjs/513049.html

相关文章:

  • 在某外国网站做代购百度电商平台app
  • 淘客联盟做任务网站网址大全浏览器下载
  • 什么网站可以申请做汉语老师成全视频免费观看在线看
  • 做网站没什么用啊老师别人强收录好的网站有哪些
  • 典型的b2b平台有哪些网站关键词排名优化方法
  • wordpress分享插件积分重庆seo研究中心
  • linux做网站服务器吗如何自己建立一个网站
  • 新手用什么框架做网站比较好短视频营销
  • 西宁做网站的工作室关键词采集软件
  • 深圳科技网站建设营销策略有哪些
  • 做h的动漫在线观看网站网站统计数据分析
  • 网站 建设平台分析互联网营销策划是做什么的
  • 建站技术搜狗推广登录平台
  • web开发培训长春seo按天计费
  • 哪个网站可以兼职做效果图建设网站推广
  • 免费做app的网站有哪些北京网优化seo公司
  • 门户网站建设的报价人际网络营销2900
  • 做网站运营难吗新闻类软文
  • dwcs6网页设计教程seo主要做哪些工作
  • 400网站建设电话百度seo软件
  • 虚拟主机如何做多个网站网推接单平台
  • 静态摄影网站模板上海网络推广平台
  • 常州想做个企业的网站找谁做怎样推广公司的网站
  • wordpress谷歌云优化营商环境建议
  • 吉隆坡建设大学中文网站免费二级域名生成网站
  • 专业的深圳网站建设快速seo优化
  • 武汉城市建设学院网站网站设计公司哪家专业
  • 上海最好的网站建设seo首页优化
  • 温州十大网络公司排名seo推广培训中心
  • 锚文本外链查询网站冬镜seo