当前位置: 首页 > wzjs >正文

wordpress ajax请求搜外seo视频 网络营销免费视频课程

wordpress ajax请求,搜外seo视频 网络营销免费视频课程,下载百度官方网站,西安高端网站建设公司现有网络模型的使用及修改 一级目录二级目录三级目录 现有网络模型的使用及修改1.VGG16模型VGG16网络模型简介**核心特点****网络结构细节****优缺点与应用****变种与后续发展** 2. 使用vgg16模型 一级目录 二级目录 三级目录 现有网络模型的使用及修改 1.VGG16模型 VGG16…

现有网络模型的使用及修改

  • 一级目录
    • 二级目录
      • 三级目录
  • 现有网络模型的使用及修改
    • 1.VGG16模型
      • VGG16网络模型简介
      • **核心特点**
      • **网络结构细节**
      • **优缺点与应用**
      • **变种与后续发展**
    • 2. 使用vgg16模型

一级目录

二级目录

三级目录

现有网络模型的使用及修改

1.VGG16模型

VGG16网络模型简介

VGG16是2014年由牛津大学视觉几何组(Visual Geometry Group, VGG)提出的卷积神经网络(CNN)模型,在当年的ImageNet大规模视觉识别挑战赛(ILSVRC)中获得亚军。它以结构简洁、层次深、特征表达能力强著称,是深度学习领域的经典模型之一,常用于图像分类、目标检测等任务的特征提取。

核心特点

  1. 深度结构

    • 16个可训练的权重层组成(包括13个卷积层和3个全连接层),网络层次较深,通过堆叠多个小尺寸卷积核(3×3)来增加网络深度和非线性表达能力。
    • 相比早期使用大尺寸卷积核(如AlexNet的11×11)的模型,VGG16通过小卷积核的组合(两个3×3卷积核相当于1个5×5的感受野,三个3×3相当于1个7×7的感受野),在减少参数的同时增强特征提取能力。
  2. 简洁的网络设计

    • 整体结构统一,采用卷积层+池化层交替堆叠的模式:
      • 卷积层:均使用3×3卷积核,步长为1, padding为1(保持特征图尺寸不变),激活函数为ReLU。
      • 池化层:均使用2×2最大池化(Max Pooling),步长为2,用于下采样和减少计算量。
  3. 全连接层与分类

    • 最后3层为全连接层,前两层各有4096个神经元,第三层有1000个神经元(对应ImageNet的1000类分类任务),通过Softmax激活函数输出分类概率。

网络结构细节

以下是VGG16的层结构概览(以输入224×224 RGB图像为例):

层类型尺寸/数量说明
输入层224×224×3输入图像(RGB三通道)
卷积块1
卷积层64×3×3×22个3×3卷积核,输出64通道,ReLU激活
最大池化层2×2,步长2输出尺寸变为112×112×64
卷积块2
卷积层128×3×3×22个3×3卷积核,输出128通道,ReLU激活
最大池化层2×2,步长2输出尺寸变为56×56×128
卷积块3
卷积层256×3×3×33个3×3卷积核,输出256通道,ReLU激活
最大池化层2×2,步长2输出尺寸变为28×28×256
卷积块4
卷积层512×3×3×33个3×3卷积核,输出512通道,ReLU激活
最大池化层2×2,步长2输出尺寸变为14×14×512
卷积块5
卷积层512×3×3×33个3×3卷积核,输出512通道,ReLU激活
最大池化层2×2,步长2输出尺寸变为7×7×512
全连接层
全连接层4096神经元ReLU激活,Dropout(防止过拟合)
全连接层4096神经元ReLU激活,Dropout
全连接层1000神经元Softmax激活,输出分类概率

优缺点与应用

  • 优点

    • 结构简单、层次分明,易于复现和修改,是研究CNN网络深度影响的经典基准。
    • 特征表达能力强,预训练权重可迁移到其他视觉任务(如目标检测、图像分割)中进行迁移学习。
  • 缺点

    • 参数总量较大(约1.38亿参数),计算复杂度高,训练需要大量显存和时间。
    • 全连接层占参数比例高,对输入图像尺寸敏感(需固定为224×224)。
  • 应用场景

    • 图像分类(如ImageNet)、目标检测(如Faster R-CNN中作为特征提取骨干网络)、图像特征提取等。

变种与后续发展

VGG系列还包括VGG11、VGG13、VGG19等变种,主要区别在于卷积层的数量(如VGG19有19个权重层)。尽管VGG模型在现代任务中逐渐被更高效的网络(如ResNet、EfficientNet)取代,但其设计思想(如小卷积核堆叠、层次化特征提取)对后续CNN发展具有深远影响。

2. 使用vgg16模型

import torchvision
from torch import nnvgg16 = torchvision.models.vgg16(pretrained=False)
vgg_true = torchvision.models.vgg16(pretrained=True) # 预训练,保留参数print(vgg_true)

在这里插入图片描述
可以看到vgg网络模型有1000个特征输出
我们可以通过一下方法对网络模型的结构进行修改,让网络模型有10个特征输出

import torchvision
from torch import nnvgg16_false = torchvision.models.vgg16(pretrained=False)
vgg16_true = torchvision.models.vgg16(pretrained=True) # 预训练,保留参数# print(vgg_true)
train_data = torchvision.datasets.CIFAR10("./das",train=True, transform=torchvision.transforms.ToTensor(),download=True)vgg16_true.classifier.add_module('add_linear', nn.Linear(1000,10)) # 添加一层
print(vgg16_true)

在这里插入图片描述

http://www.dtcms.com/wzjs/508900.html

相关文章:

  • 租用网站服务器价格网站排名
  • 做网站放博彩广告汕头百度网站推广
  • 青岛网景互联网站建设公司武汉java培训机构排名榜
  • 做自己的网站收费吗百度广告联盟怎么赚钱
  • 建设商城网站制作磁力猫最好磁力搜索引擎
  • 自动评论插件wordpress百度点击优化
  • 网站建设开拓该行业的难点疑网址注册查询
  • 响应式网站用什么工具做百度seo排名优化联系方式
  • 政府网站建设与行政管理创新google chrome官网
  • 做网站js框架百度竞价推广有哪些优势
  • 做网站不花钱中文域名的网站
  • 首页重庆网站建设百度推广营销方案
  • 想学网站建设选计算机应用技术还是计算机网络技术哪个专业啊谷歌浏览器下载手机版
  • 申请建设部门网站的报告学生网页制作成品
  • 建站借鉴其他网站外贸公司一般怎么找客户
  • 广州网站推广找哪里宁波靠谱营销型网站建设
  • 网站三合一seo的研究对象
  • 哈尔滨网站建设制作哪家好苏州疫情最新情况
  • 哪个网站可以做海报湖南seo服务电话
  • 2019为赌博网站做代理被判缓刑百度云网盘官网
  • 网站大屏轮播图效果怎么做今日微博热搜榜前十名
  • 寻找锦州网站建设关键词批量调词软件
  • 宿迁网站建设怎么收费网页设计模板免费网站
  • 网站外链建设策略德州seo整站优化
  • 好网站建设公司哪家好?网站seo推广优化
  • 企业自助建站系统源码百度服务中心投诉
  • 莱芜新闻最新事件seo计费系统开发
  • 做交网站成长电影在线观看免费
  • 做网站和域名厦门百度竞价开户
  • wordpress xiu主题最新版网络优化公司排名