当前位置: 首页 > wzjs >正文

深圳php网站建设厦门人才网最新招聘信息网

深圳php网站建设,厦门人才网最新招聘信息网,常州市网站建设公司,wordpress更换主题500前序 之前了解了Models,Prompt,但有些资料又把这块与输出合称为模型输入输出(Model I/O)‌:这是与各种大语言模型进行交互的基本组件。它允许开发者管理提示(prompt),通过通用接口调…

前序

之前了解了Models,Prompt,但有些资料又把这块与输出合称为模型输入输出(Model I/O)‌:这是与各种大语言模型进行交互的基本组件。它允许开发者管理提示(prompt),通过通用接口调用语言模型,并从模型输出中提取信息。简单来说,这个组件负责与大语言模型“对话”,将请求传递给模型,并接收回复‌。
这篇文章就补充一下这个O(output)的内容。

输出解释器

Output Parsers(输出解析器),是langchain中提供给我们对模型响应内容进行格式化输出的。LLM的输出为文本,但在程序中除了显示文本,如果希望获得更多不同的结构化数据时,就可以使用langchain提供的输出解析器(Output Parsers)来完成了。输出解析器(Output Parsers)实际上就是结构化语言模型提供的响应处理工具类,其提供了如下两个方法给开发者使用,也是这些响应类必须实现的两个方法:

get_format_instructions() -> str :返回一个包含语言模型如何格式化输出的指令字符串。

invoke()-> Any:接受一个结构化言模型的响应对象,并将其解析为指定格式

Str输出解析器

import os
from langchain_deepseek import ChatDeepSeek
from langchain.prompts import PromptTemplate# 初始化模型
os.environ['DEEPSEEK_API_KEY'] = "sk-e2xxx"
chat_model = ChatDeepSeek(model="deepseek-chat",temperature=0.4,max_tokens=None,timeout=None,max_retries=2,)# 创建提示模板
prompt_template = PromptTemplate(input_variables=["context"],template="基于给定的文案,以幽默诙谐的风格生成一段回答文本:{context}",
)# 使用模型生成文本
context = "成都今天出太阳了,天气真好,我们翘班出去玩吧。"
prompt = prompt_template.format(context=context)
result = chat_model.invoke(prompt)
print(result)

在这里插入图片描述
回答内容很长,但是我们需要的只有content那串。引入StrOutputParser,把返回的结果,经过解析,就只有文本结果内容了

...
from langchain_core.output_parsers import StrOutputParser
res = StrOutputParser().invoke(input=result)
print(res)

在这里插入图片描述

List输出解析器


import os
from langchain_deepseek import ChatDeepSeek# 初始化模型
os.environ['DEEPSEEK_API_KEY'] = "sk-e24324xxx"
chat_model = ChatDeepSeek(model="deepseek-chat",temperature=0.4,max_tokens=None,timeout=None,max_retries=2,)
from langchain_core.output_parsers import CommaSeparatedListOutputParser
from langchain_core.prompts import PromptTemplateparser = CommaSeparatedListOutputParser()prompt = PromptTemplate.from_template(template="请列出5个{item}的不同叫法.\n{format_instructions}\n",partial_variables={"format_instructions": parser.get_format_instructions()},
)messages = prompt.invoke({'item': '土豆'})
print(messages)result = chat_model.invoke(messages)
res = parser.invoke(result)
print(res)"""
text='请列出5个土豆的不同叫法.\nYour response should be a list of comma separated values, eg: `foo, bar, baz` or `foo,bar,baz`\n'
['马铃薯', '洋芋', '土豆', '薯仔', '地蛋']
"""

Json输出解释器

其他内容大差不差,把 CommaSeparatedListOutputParser换成JsonOutputParser就行


from pydantic import BaseModel, Field
from langchain_core.output_parsers import JsonOutputParser
from langchain_core.prompts import PromptTemplateclass JsonParser(BaseModel):question: str = Field(description='问题')answer: str = Field(description='答案')parser = JsonOutputParser(pydantic_object=JsonParser)prompt = PromptTemplate(template="回答问题.\n{format_instructions}\n{query}\n",input_variables=["query"],partial_variables={"format_instructions": parser.get_format_instructions()},
)# print(parser.get_format_instructions())messages = prompt.invoke({'query': '讲一个脑筋急转弯的问题和答案。'})
response = chat_model.invoke(messages)
content = parser.invoke(response)
print(content) """
{'question': '什么东西越洗越脏?', 'answer': '水'}
"""

stream输出解析器

如果输出内容很长,一直等处理完才返回结果也不大好,比如我们正常使用在线大模型,它都是几个字几个字往外吐的,不是最后直接给答案。
这里就需要用到stream输出解析器

import os
from langchain_deepseek import ChatDeepSeek# 初始化模型
os.environ['DEEPSEEK_API_KEY'] = "sk-e24xxx"
chat_model = ChatDeepSeek(model="deepseek-chat",temperature=0.4,max_tokens=None,timeout=None,max_retries=2,)from langchain_ollama.llms import OllamaLLM
from langchain_core.prompts import PromptTemplateprompt_template = PromptTemplate.from_template("你是一名名经验丰富的{role},{ability},{prompt}")
messages = prompt_template.invoke({"role": "修仙小说作家", "ability": "熟悉各种神话传说和修仙小说","prompt": "请你写一部与牧神记类似的小说,要求:全书至少600章,每一章字数在8000字以上,剧情紧凑,各个角色的个性分明"})
print(messages)for chunk in chat_model.stream(messages):print(chunk, end="", flush=True)

在这里插入图片描述
或者这样不好看,也可以用上面的字符串输出解释器来处理一下输出内容


from langchain_core.output_parsers import StrOutputParser# 修改一下输出这里
for chunk in chat_model.stream(messages):print(StrOutputParser().invoke(chunk), end="", flush=True)

在这里插入图片描述
到这里,就就开始慢慢帮我们写小说了。

Cache

如果每次问同样的,都调用大模型推理,那么会比较耗💰,可以把问题和答案记录下来,以后遇到同样的问题,则不必再使用大模型推理。

基于langchain提供的输出缓存,让LLM在遇到同一prompt时,直接调用缓存中的结果,也可以达到加速的效果。

# -*- coding: utf-8 -*-
# @Author : John
# @Time : 2025/02/27
# @File : langchain_cache.pyimport time
import redis
from langchain_openai import ChatOpenAI
from langchain_core.prompts import PromptTemplate
# from langchain_community.cache import InMemoryCache  # 把输出缓存到内存中
from langchain_community.cache import RedisCache  # 把输出缓存到Redis数据库中
from langchain.globals import set_llm_cacheimport os
from langchain_deepseek import ChatDeepSeek# 初始化模型
os.environ['DEEPSEEK_API_KEY'] = "sk-e243xxxf"
chat_model = ChatDeepSeek(model="deepseek-chat",temperature=0.4,  # temperature 温度值,数值越趋向0,回答越谨慎,数值越趋向1,回答则越脑洞大开,主要控制大模型输出的创造力max_tokens=None,timeout=None,max_retries=2,)prompt_template = PromptTemplate.from_template("你是一个产品顾问。请给公司刚生产出来的 {production},取一个好听的名字和广告语。")
messages = prompt_template.invoke({"production": "充电宝"})# 开启缓存
redis = redis.Redis("localhost", port=6379, password="qwe123", db=2)
set_llm_cache(RedisCache(redis))timers = []
for _ in range(5):t1 = time.time()response = chat_model.invoke(messages)t2 = time.time()print(t2 - t1, response)timers.append(t2 - t1)print(timers)

在这里插入图片描述
可以看到输出结果都是一致的。只有第一次真正请求了deepseek,花了65s获得了结果,后面都是第一次结果保存到redis,从redis获取的。
在这里插入图片描述

http://www.dtcms.com/wzjs/507554.html

相关文章:

  • 上海seo网站优化湖南关键词优化排名推广
  • 网站建设外包行业优化大师官方免费
  • iis 网站名热门搜索排行榜
  • 遂宁公司做网站企业网上的推广
  • 中英互译网站怎么做搜索网站哪个好
  • 四川省建设厅电子政务网站谷歌关键词挖掘工具
  • 公司网站费用计入什么科目电脑课程培训零基础
  • 设计本网站图片大全怎么样做推广
  • 网站设计报价方案windows优化大师下载安装
  • 抚州网站建设公司手机关键词排名优化
  • 网站设计师接单seo查询优化
  • 南京手机网站制作百度关键字
  • 男女做暖网站是什么样子的外链发布平台
  • 做网站号码互联网销售怎么做
  • 有关建设旅行网站的建设广州网站优化推广方案
  • 刷赞网站怎么做的昆明seo
  • 怎样做免费外贸网站营销策划方案怎么写
  • 唯独建设银行网站无法登陆2023年6月份又封城了
  • 广东中国移动网站如何在百度上做产品推广
  • 熵网站站长工具pr值查询
  • 自己做坑人网站的软件武汉网站制作推广
  • 奎文营销型网站建设百度一下就知道百度首页
  • 免费ppt课件下载网站营销策划方案范文
  • 如何使用网站模板建设网站优化是什么梗
  • 网站在线客服公众号怎么做江门网站建设
  • 太原建设局网站谷歌官方网站注册
  • 小区网站开发论文平台广告推广
  • 网站维护需要哪些知识昆明网站seo服务
  • 可以自己做安卓app的网站推广软文是什么
  • 怎么给自己网站做搜索框吸引人的软文标题