当前位置: 首页 > wzjs >正文

旅游网站制作今日头条新闻军事

旅游网站制作,今日头条新闻军事,二级建造师招聘网最新招聘,网站上职业学校排名 该怎么做博主介绍:✌程序员徐师兄,7年大厂开发经验。全网粉丝12w,CSDN博客专家,同时活跃在掘金、华为云、阿里云、InfoQ等平台,专注Java技术和毕业项目实战分享✌ 🍅文末获取源码联系🍅 👇&a…

博主介绍:✌程序员徐师兄,7年大厂开发经验。全网粉丝12w+,CSDN博客专家,同时活跃在掘金、华为云、阿里云、InfoQ等平台,专注Java技术和毕业项目实战分享✌
🍅文末获取源码联系🍅
👇🏻 精彩专栏推荐订阅👇🏻 不然下次找不到哟

  • 2022‑2024年最全的计算机软件毕业设计选题大全:1000个热门选题推荐✅
  • Java项目精品实战案例《500套》
  • Java微信小程序项目实战《200套》
  • Python项目实战《200套》
    感兴趣的先收藏!毕设选题、项目、文档写作有疑问随时留言~

文章目录

    • 简介
    • 技术栈
    • 系统模块
    • 核心代码示例
      • 爬虫示例(Requests + BeautifulSoup)
      • 数据清洗与聚合(Pandas)
      • 后端接口(Django View)
      • 前端 ECharts 展示
    • 效果展示
      • 登录与数据管理
      • 首页概览
      • 动态可视化
      • 后台管理
    • 源码获取:

简介

这套系统是用 Python + Django 搭的,目标是帮咱们把广州、杭州和北京的二手房价格扒下来,然后通过酷炫的图表一键展示动态走势。后台用 Django 提供接口,前端用 HTML 搭页面,图表部分用 ECharts,数据暂时放 SQLite,结构轻巧又好上手。整个项目实战性强,新手大学生拿来做毕业设计、课程设计都很合适。

房价可视化

系统能自动爬取各大房产网站二手房最新报价,结合 Pandas 做数据清洗、聚合,再把结果喂给前端。用户一打开页面,就能看到不同城市按时间、区域、房型分类的均价折线图、柱状图,直观了解市场波动。


技术栈

技术用途说明
Django后端框架处理业务逻辑、提供 RESTful 接口
Django 文档
快速入门
SQLite数据存储轻量级嵌入式数据库,免安装
Pandas数据处理清洗、统计、聚合
Pandas 教程
PyMySQLMySQL 连接(可选)若要用 MySQL,请安装并替换 SQLite
Requests网络请求发起爬虫 HTTP 请求
BeautifulSoup4网页解析从 HTML 中抽取房源信息
ECharts前端可视化折线图、柱状图、区域热力图
ECharts 入门
HTML/CSS/JS前端页面展示图表和交互

系统模块

整个可视化系统一共分三个核心模块:

  1. 数据采集

    • 使用 Requests + BeautifulSoup4 自动爬取指定网站的二手房列表页和详情页。
    • 加入随机 UA、延时(time.sleep(random.uniform(1,3)))和异常重试,防止被反爬。
  2. 数据处理

    • 用 Pandas 将原始爬取的字段(小区名、区域、价格、面积、发布时间等)做清洗和标准化。
    • 对空值字段赋 NaN,统一时间格式,拆分房型、楼层等;
    • 按城市+日期+区域聚合,计算每日均价、涨跌幅。
  3. 图表展示

    • 后端 Django 提供 JSON 接口 /api/price-trend?city=北京&start=2024-01-01&end=2024-05-01,返回均价时序。
    • 前端用 ECharts 画折线图、柱状图、热力图,一页多图自由切换;
    • 支持按房型筛选、按区县对比。

核心代码示例

爬虫示例(Requests + BeautifulSoup)

import random, time, requests
from bs4 import BeautifulSoupdef fetch_page(url):headers = {'User-Agent': get_random_ua()}resp = requests.get(url, headers=headers, timeout=10)resp.raise_for_status()return resp.textdef parse_list(html):soup = BeautifulSoup(html, 'html.parser')for item in soup.select('.list-item'):yield {'title': item.select_one('.title').get_text(strip=True),'price': item.select_one('.price').get_text(strip=True),'area': item.select_one('.area').get_text(strip=True),'detail_url': item.select_one('a')['href']}# 定时拉取
for city in ['gz', 'hz', 'bj']:for page in range(1, 6):url = f'https://{city}.ershoufang.example.com/page/{page}/'html = fetch_page(url)for record in parse_list(html):save_to_db(city, record)time.sleep(random.uniform(1, 3))

数据清洗与聚合(Pandas)

import pandas as pd
from sqlalchemy import create_engine# 连接 SQLite
engine = create_engine('sqlite:///house.db')df = pd.read_sql('select * from listings', engine)
# 清洗
df['price'] = df['price'].str.replace('万', '').astype(float)
df['date'] = pd.to_datetime(df['date'])
df['district'] = df['title'].apply(lambda s: s.split()[1])# 聚合计算每日均价
trend = df.groupby(['city', df['date'].dt.date]).price.mean().reset_index()
trend.to_sql('price_trend', engine, if_exists='replace', index=False)

后端接口(Django View)

from django.http import JsonResponse
from .models import PriceTrenddef price_trend(request):city = request.GET.get('city')start = request.GET.get('start')end = request.GET.get('end')qs = PriceTrend.objects.filter(city=city, date__range=[start, end]).order_by('date')data = list(qs.values('date', 'price'))return JsonResponse({'status': 'ok', 'data': data})

前端 ECharts 展示

<div id="chart" style="width: 100%; height: 400px;"></div>
<script>
fetch(`/api/price-trend?city=北京&start=2024-01-01&end=2024-05-01`).then(res => res.json()).then(({ data }) => {const dates = data.map(d => d.date);const prices = data.map(d => d.price);var myChart = echarts.init(document.getElementById('chart'));myChart.setOption({title: { text: '北京二手房均价走势' },xAxis: { type: 'category', data: dates },yAxis: { type: 'value' },series: [{ data: prices, type: 'line', smooth: true }]});});
</script>

效果展示

登录与数据管理

登录注册

首页概览

系统首页

动态可视化

房价折线

后台管理

后台管理


源码获取:

大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻

👇🏻 精彩专栏推荐订阅👇🏻 不然下次找不到哟

2022-2024年最全的计算机软件毕业设计选题大全:1000个热门选题推荐✅

Java项目精品实战案例《100套》

Java微信小程序项目实战《100套》

Python项目实战《100套》

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及文档编写等相关问题都可以给我留言咨询,希望帮助更多的人

http://www.dtcms.com/wzjs/502885.html

相关文章:

  • 开公司做购物网站是不是想多了厦门人才网官网登录
  • 做资源共享网站今日头条新闻发布
  • 做ptt网站百度网盘登录入口
  • 做老虎机网站犯法么北京朝阳区疫情最新情况
  • 网站建设与维护技术浅谈论文浏览器观看b站视频的最佳设置
  • 优化型网站模板如何网络媒体推广
  • 怎样添加网站地图关键词排名快照优化
  • 河北省建设工程质监站网站网络营销的主要方式
  • 高端网站建设企业官网建设免费b站推广网站2023
  • 网站怎么做gps定位北京seo顾问服务公司
  • oracle网站开发公司做个网站多少钱
  • wordpress tags.php谷歌seo 优化
  • 建筑人才网平台南京百度推广优化
  • 字体艺术设计在线生成优化seo招聘
  • 网站开发行业标准爱站网怎么用
  • 做网站具备的条件google官方下载安装
  • 注销网站备案申请表谷歌seo关键词优化
  • 网站建设工作室发展百度云网盘资源链接
  • 新公司做网站怎么弄上海网站建设公司排名
  • 网站测试空间谷歌搜索引擎seo
  • 网站展示程序今天最新新闻10条
  • 网站建设方案书ppt推广普通话的手抄报
  • 招标投标公共服务平台太原seo外包平台
  • 做政府网站预算百度平台商家
  • 企业大型网站开发需要多少钱免费网站制作成品
  • 有的网站域名解析错误杭州seo排名费用
  • 国外简约网站网站搭建需要多少钱?
  • 天津建筑工程公司有哪些seo属于什么职位类型
  • 做视频自媒体要投稿几个网站优化网站关键词排名
  • 西丽网站建设设计站长工具站长