当前位置: 首页 > wzjs >正文

贵阳优化网站建设百度搜索热词查询

贵阳优化网站建设,百度搜索热词查询,福建新冠疫情最新情况,敬请期待的意思作业:day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.util…

作业:day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np
import os
import time
from torchvision import models# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")# 定义通道注意力
class ChannelAttention(nn.Module):def __init__(self, in_channels, ratio=16):super().__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.max_pool = nn.AdaptiveMaxPool2d(1)self.fc = nn.Sequential(nn.Linear(in_channels, in_channels // ratio, bias=False),nn.ReLU(),nn.Linear(in_channels // ratio, in_channels, bias=False))self.sigmoid = nn.Sigmoid()def forward(self, x):b, c, h, w = x.shapeavg_out = self.fc(self.avg_pool(x).view(b, c))max_out = self.fc(self.max_pool(x).view(b, c))attention = self.sigmoid(avg_out + max_out).view(b, c, 1, 1)return x * attention## 空间注意力模块
class SpatialAttention(nn.Module):def __init__(self, kernel_size=7):super().__init__()self.conv = nn.Conv2d(2, 1, kernel_size, padding=kernel_size//2, bias=False)self.sigmoid = nn.Sigmoid()def forward(self, x):avg_out = torch.mean(x, dim=1, keepdim=True)max_out, _ = torch.max(x, dim=1, keepdim=True)pool_out = torch.cat([avg_out, max_out], dim=1)attention = self.conv(pool_out)return x * self.sigmoid(attention)## CBAM模块
class CBAM(nn.Module):def __init__(self, in_channels, ratio=16, kernel_size=7):super().__init__()self.channel_attn = ChannelAttention(in_channels, ratio)self.spatial_attn = SpatialAttention(kernel_size)def forward(self, x):x = self.channel_attn(x)x = self.spatial_attn(x)return x# 自定义ResNet18模型,插入CBAM模块
class ResNet18_CBAM(nn.Module):def __init__(self, num_classes=10, pretrained=True, cbam_ratio=16, cbam_kernel=7):super().__init__()# 加载预训练ResNet18self.backbone = models.resnet18(pretrained=pretrained) # 修改首层卷积以适应32x32输入self.backbone.conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False)self.backbone.maxpool = nn.Identity()  # 移除原始MaxPool层# 在每个残差块组后添加CBAM模块self.cbam_layer1 = CBAM(in_channels=64, ratio=cbam_ratio, kernel_size=cbam_kernel)self.cbam_layer2 = CBAM(in_channels=128, ratio=cbam_ratio, kernel_size=cbam_kernel)self.cbam_layer3 = CBAM(in_channels=256, ratio=cbam_ratio, kernel_size=cbam_kernel)self.cbam_layer4 = CBAM(in_channels=512, ratio=cbam_ratio, kernel_size=cbam_kernel)# 修改分类头self.backbone.fc = nn.Linear(in_features=512, out_features=num_classes)def forward(self, x):x = self.backbone.conv1(x)x = self.backbone.bn1(x)x = self.backbone.relu(x)  # [B, 64, 32, 32]# 第一层残差块 + CBAMx = self.backbone.layer1(x)  # [B, 64, 32, 32]x = self.cbam_layer1(x)# 第二层残差块 + CBAMx = self.backbone.layer2(x)  # [B, 128, 16, 16]x = self.cbam_layer2(x)# 第三层残差块 + CBAMx = self.backbone.layer3(x)  # [B, 256, 8, 8]x = self.cbam_layer3(x)# 第四层残差块 + CBAMx = self.backbone.layer4(x)  # [B, 512, 4, 4]x = self.cbam_layer4(x)# 全局平均池化 + 分类x = self.backbone.avgpool(x)  # [B, 512, 1, 1]x = torch.flatten(x, 1)  # [B, 512]x = self.backbone.fc(x)  # [B, num_classes]return x# ==================== 数据加载修改部分 ====================
# 数据集路径
train_data_dir = 'archive/Train_Test_Valid/Train'
test_data_dir = 'archive/Train_Test_Valid/test'# 获取类别数量
num_classes = len(os.listdir(train_data_dir))
print(f"检测到 {num_classes} 个类别")# 数据预处理
train_transform = transforms.Compose([transforms.RandomResizedCrop(32),transforms.RandomHorizontalFlip(),transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),transforms.RandomRotation(15),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])test_transform = transforms.Compose([transforms.Resize(32),transforms.CenterCrop(32),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])# 加载数据集
train_dataset = datasets.ImageFolder(root=train_data_dir, transform=train_transform)
test_dataset = datasets.ImageFolder(root=test_data_dir, transform=test_transform)train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True, num_workers=4)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False, num_workers=4)print(f"训练集大小: {len(train_dataset)} 张图片")
print(f"测试集大小: {len(test_dataset)} 张图片")# ==================== 训练函数 ====================
def set_trainable_layers(model, trainable_parts):print(f"\n---> 解冻以下部分并设为可训练: {trainable_parts}")for name, param in model.named_parameters():param.requires_grad = Falsefor part in trainable_parts:if part in name:param.requires_grad = Truebreakdef train_staged_finetuning(model, criterion, train_loader, test_loader, device, epochs):optimizer = Noneall_iter_losses, iter_indices = [], []train_acc_history, test_acc_history = [], []train_loss_history, test_loss_history = [], []for epoch in range(1, epochs + 1):epoch_start_time = time.time()# 动态调整学习率和冻结层if epoch == 1:print("\n" + "="*50 + "\n🚀 **阶段 1:训练注意力模块和分类头**\n" + "="*50)set_trainable_layers(model, ["cbam", "backbone.fc"])optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=1e-3)elif epoch == 6:print("\n" + "="*50 + "\n✈️ **阶段 2:解冻高层卷积层 (layer3, layer4)**\n" + "="*50)set_trainable_layers(model, ["cbam", "backbone.fc", "backbone.layer3", "backbone.layer4"])optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=1e-4)elif epoch == 21:print("\n" + "="*50 + "\n🛰️ **阶段 3:解冻所有层,进行全局微调**\n" + "="*50)for param in model.parameters(): param.requires_grad = Trueoptimizer = optim.Adam(model.parameters(), lr=1e-5)# 训练循环model.train()running_loss, correct, total = 0.0, 0, 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append((epoch - 1) * len(train_loader) + batch_idx + 1)running_loss += iter_loss_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / totaltrain_loss_history.append(epoch_train_loss)train_acc_history.append(epoch_train_acc)# 测试循环model.eval()test_loss, correct_test, total_test = 0, 0, 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_testtest_loss_history.append(epoch_test_loss)test_acc_history.append(epoch_test_acc)print(f'Epoch {epoch}/{epochs} 完成 | 耗时: {time.time() - epoch_start_time:.2f}s | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')# 绘图函数def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('每个 Iteration 的训练损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):epochs = range(1, len(train_acc) + 1)plt.figure(figsize=(12, 4))plt.subplot(1, 2, 1)plt.plot(epochs, train_acc, 'b-', label='训练准确率')plt.plot(epochs, test_acc, 'r-', label='测试准确率')plt.xlabel('Epoch')plt.ylabel('准确率 (%)')plt.title('训练和测试准确率')plt.legend(); plt.grid(True)plt.subplot(1, 2, 2)plt.plot(epochs, train_loss, 'b-', label='训练损失')plt.plot(epochs, test_loss, 'r-', label='测试损失')plt.xlabel('Epoch')plt.ylabel('损失值')plt.title('训练和测试损失')plt.legend(); plt.grid(True)plt.tight_layout()plt.show()print("\n训练完成! 开始绘制结果图表...")plot_iter_losses(all_iter_losses, iter_indices)plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)return epoch_test_acc# ==================== 主程序 ====================
model = ResNet18_CBAM(num_classes=num_classes).to(device)
criterion = nn.CrossEntropyLoss()
epochs = 50print("开始使用带分阶段微调策略的ResNet18+CBAM模型进行训练...")
final_accuracy = train_staged_finetuning(model, criterion, train_loader, test_loader, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")# 保存模型
torch.save(model.state_dict(), 'resnet18_cbam_custom.pth')
print("模型已保存为: resnet18_cbam_custom.pth")

使用设备: cpu
检测到 6 个类别
训练集大小: 900 张图片
测试集大小: 40 张图片
d:\anaconda\Lib\site-packages\torchvision\models\_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead.
  warnings.warn(
d:\anaconda\Lib\site-packages\torchvision\models\_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=ResNet18_Weights.IMAGENET1K_V1`. You can also use `weights=ResNet18_Weights.DEFAULT` to get the most up-to-date weights.
  warnings.warn(msg)
开始使用带分阶段微调策略的ResNet18+CBAM模型进行训练...

==================================================
🚀 **阶段 1:训练注意力模块和分类头**
==================================================

---> 解冻以下部分并设为可训练: ['cbam', 'backbone.fc']
Epoch 1/50 完成 | 耗时: 17.97s | 训练准确率: 19.89% | 测试准确率: 12.50%
Epoch 2/50 完成 | 耗时: 16.93s | 训练准确率: 31.22% | 测试准确率: 35.00%
Epoch 3/50 完成 | 耗时: 17.15s | 训练准确率: 35.56% | 测试准确率: 35.00%
Epoch 4/50 完成 | 耗时: 17.36s | 训练准确率: 37.11% | 测试准确率: 52.50%
Epoch 5/50 完成 | 耗时: 17.60s | 训练准确率: 37.56% | 测试准确率: 50.00%

==================================================
✈️ **阶段 2:解冻高层卷积层 (layer3, layer4)**
==================================================

---> 解冻以下部分并设为可训练: ['cbam', 'backbone.fc', 'backbone.layer3', 'backbone.layer4']
Epoch 6/50 完成 | 耗时: 19.17s | 训练准确率: 45.00% | 测试准确率: 60.00%
Epoch 7/50 完成 | 耗时: 19.26s | 训练准确率: 52.78% | 测试准确率: 67.50%
Epoch 8/50 完成 | 耗时: 19.21s | 训练准确率: 56.22% | 测试准确率: 62.50%
Epoch 9/50 完成 | 耗时: 19.33s | 训练准确率: 60.22% | 测试准确率: 72.50%
Epoch 10/50 完成 | 耗时: 19.32s | 训练准确率: 62.33% | 测试准确率: 72.50%
Epoch 11/50 完成 | 耗时: 19.34s | 训练准确率: 62.33% | 测试准确率: 70.00%
Epoch 12/50 完成 | 耗时: 29.18s | 训练准确率: 65.78% | 测试准确率: 72.50%
Epoch 13/50 完成 | 耗时: 37.93s | 训练准确率: 67.11% | 测试准确率: 72.50%
Epoch 14/50 完成 | 耗时: 36.39s | 训练准确率: 69.00% | 测试准确率: 75.00%
Epoch 15/50 完成 | 耗时: 37.31s | 训练准确率: 71.22% | 测试准确率: 72.50%
Epoch 16/50 完成 | 耗时: 36.51s | 训练准确率: 71.89% | 测试准确率: 72.50%
Epoch 17/50 完成 | 耗时: 24.59s | 训练准确率: 75.89% | 测试准确率: 67.50%
Epoch 18/50 完成 | 耗时: 36.65s | 训练准确率: 75.00% | 测试准确率: 70.00%
Epoch 19/50 完成 | 耗时: 20.12s | 训练准确率: 74.33% | 测试准确率: 67.50%
Epoch 20/50 完成 | 耗时: 19.23s | 训练准确率: 75.44% | 测试准确率: 70.00%

==================================================
🛰️ **阶段 3:解冻所有层,进行全局微调**
==================================================
Epoch 21/50 完成 | 耗时: 22.10s | 训练准确率: 76.78% | 测试准确率: 70.00%
Epoch 22/50 完成 | 耗时: 22.77s | 训练准确率: 78.33% | 测试准确率: 72.50%
Epoch 23/50 完成 | 耗时: 22.42s | 训练准确率: 78.67% | 测试准确率: 70.00%
Epoch 24/50 完成 | 耗时: 38.86s | 训练准确率: 77.33% | 测试准确率: 70.00%
Epoch 25/50 完成 | 耗时: 33.47s | 训练准确率: 80.11% | 测试准确率: 67.50%
Epoch 26/50 完成 | 耗时: 44.94s | 训练准确率: 78.11% | 测试准确率: 70.00%
Epoch 27/50 完成 | 耗时: 45.14s | 训练准确率: 78.56% | 测试准确率: 72.50%
Epoch 28/50 完成 | 耗时: 43.69s | 训练准确率: 79.22% | 测试准确率: 70.00%
Epoch 29/50 完成 | 耗时: 22.11s | 训练准确率: 78.67% | 测试准确率: 67.50%
Epoch 30/50 完成 | 耗时: 23.66s | 训练准确率: 81.11% | 测试准确率: 72.50%
Epoch 31/50 完成 | 耗时: 21.64s | 训练准确率: 77.22% | 测试准确率: 67.50%
Epoch 32/50 完成 | 耗时: 21.86s | 训练准确率: 79.33% | 测试准确率: 70.00%
Epoch 33/50 完成 | 耗时: 21.48s | 训练准确率: 83.89% | 测试准确率: 65.00%
Epoch 34/50 完成 | 耗时: 23.06s | 训练准确率: 81.44% | 测试准确率: 57.50%
Epoch 35/50 完成 | 耗时: 239.58s | 训练准确率: 79.89% | 测试准确率: 70.00%
Epoch 36/50 完成 | 耗时: 35.76s | 训练准确率: 79.11% | 测试准确率: 70.00%
Epoch 37/50 完成 | 耗时: 22.56s | 训练准确率: 83.00% | 测试准确率: 72.50%
Epoch 38/50 完成 | 耗时: 22.46s | 训练准确率: 82.00% | 测试准确率: 72.50%
Epoch 39/50 完成 | 耗时: 22.68s | 训练准确率: 81.78% | 测试准确率: 70.00%
Epoch 40/50 完成 | 耗时: 22.62s | 训练准确率: 84.44% | 测试准确率: 72.50%
Epoch 41/50 完成 | 耗时: 22.75s | 训练准确率: 80.22% | 测试准确率: 70.00%
Epoch 42/50 完成 | 耗时: 23.17s | 训练准确率: 82.56% | 测试准确率: 72.50%
Epoch 43/50 完成 | 耗时: 23.40s | 训练准确率: 81.78% | 测试准确率: 70.00%
Epoch 44/50 完成 | 耗时: 23.70s | 训练准确率: 81.44% | 测试准确率: 70.00%
Epoch 45/50 完成 | 耗时: 23.79s | 训练准确率: 81.11% | 测试准确率: 70.00%
Epoch 46/50 完成 | 耗时: 23.40s | 训练准确率: 81.56% | 测试准确率: 70.00%
Epoch 47/50 完成 | 耗时: 22.86s | 训练准确率: 83.22% | 测试准确率: 72.50%
Epoch 48/50 完成 | 耗时: 23.04s | 训练准确率: 81.89% | 测试准确率: 72.50%
Epoch 49/50 完成 | 耗时: 22.77s | 训练准确率: 84.11% | 测试准确率: 67.50%
Epoch 50/50 完成 | 耗时: 22.83s | 训练准确率: 83.00% | 测试准确率: 72.50%

训练完成! 开始绘制结果图表...

 @浙大疏锦行

http://www.dtcms.com/wzjs/500694.html

相关文章:

  • 做网站花钱么天猫店铺申请条件及费用
  • 怎么做租房网站正规的微信推广平台
  • wordpress禁用保存草稿北京seo相关
  • wordpress 用户反馈揭阳百度seo公司
  • 怎么看网站是不是h5做的百度贴吧官网app下载
  • 专业的培训网站建设市场营销策略
  • 有做网站代理运营的吗百度广告点击一次多少钱
  • 《jsp动态网站开发》百度经验app
  • 百度竞价排名是以什么形式来计费的广告?论坛如何做seo
  • 公司网站不用了如何注销中小企业网站制作
  • 四川城乡和住房建设厅官方网站百度搜索风云榜排名
  • 知名网站有哪些?个人域名注册流程
  • 网站前台设计软件百度网盘官方网站
  • 制作付款网站seo排名工具
  • icp备案域名网站备案信息百度登录入口百度
  • 网页开发平台seo诊断方法步骤
  • 抓取的网站如何做seo网站建设方案开发
  • thinkphp和wordpress梅花seo 快速排名软件
  • 网站死链处理中国国家培训网靠谱吗
  • 招远网站百度seo怎么做网站内容优化
  • 个人网站建设的论文品牌宣传策略
  • java做网站下载图片广告公司名称
  • 配色相关网站郑州关键词优化顾问
  • 网站开发设计的步骤色盲测试图 考驾照
  • 做网站模板在哪儿找百度图片搜索引擎入口
  • wordpress 导航栏 搜索北京seo学校
  • 西安建设教育网站站长统计性宝app
  • 简述网站的建设流程图搜索关键词优化服务
  • 网站建设先进工作者西安百度框架户
  • 一个空间怎么放两个网站吗郑州网站推广技术