当前位置: 首页 > wzjs >正文

超链接到网站怎么做视频文件下载google下载安卓版下载

超链接到网站怎么做视频文件下载,google下载安卓版下载,美国成年做爰网站,建设手机移动网站目录 一、logistic回归基本概念 1.1 定义 1.2 分类原理 1.3 与线性回归的区别 线性回归预测连续值,适用于回归任务 logistic回归预测概率,适用于分类任务 二、损失函数与优化 2.1 损失函数 2.2 优化方法 2.2.1 批量梯度下降(BGD&…

目录

一、logistic回归基本概念

1.1 定义

1.2 分类原理

1.3 与线性回归的区别

线性回归预测连续值,适用于回归任务

logistic回归预测概率,适用于分类任务

二、损失函数与优化

2.1 损失函数

2.2 优化方法

2.2.1 批量梯度下降(BGD)

过程

优点

缺点

2.2.2 随机梯度下降(SGD)

过程

缺点

2.2.3 小批量梯度下降(MGD)

过程

三、正则化

3.1 L1正则化

3.2 L2正则化

四、Logistic回归应用实例:基于二维数据集的分类实践

数据集:包含两个特征 (x1, x2) 和一个二分类标签 (y, 0 或 1)

代码实现


一、logistic回归基本概念

1.1 定义

Logistic回归是一种用于解决二分类问题(也可扩展到多分类)的监督学习算法,预测结果是 概率值(0到1之间)。

通过Sigmoid函数将线性组合映射到概率,公式为P(y=1|X) = \frac{1}{1 + e^{-(w^TX + b)}}

其中

  • w是权重
  • b是偏置
  • X是输入特征

1.2 分类原理

根据概率值设定阈值(通常为0.5)进行分类

预测值 > 阈值 正类

预测值 < 阈值 负类

1.3 与线性回归的区别

线性回归预测连续值,适用于回归任务

logistic回归预测概率,适用于分类任务

二、损失函数与优化

2.1 损失函数

logistic回归适用对数损失函数(也称交叉熵损失)

J(w, b) = -\frac{1}{m} \sum_{i=1}^m \left[ y_i \log(\hat{y}_i) + (1-y_i) \log(1-\hat{y}_i) \right]

其中 y_i是真实标签(0或1),\hat{y}_i是预测概率,m是样本数

2.2 优化方法

梯度下降:通过迭代更新权重w和偏置b最小化损失函数

梯度推导:损失函数对权重和偏置的偏导数

  • 权重更新

w_j \gets w_j - \alpha \frac{\partial J}{\partial w_j}, \quad \frac{\partial J}{\partial w_j} = \frac{1}{m} \sum_{i=1}^m (\hat{y}_i - y_i) x_{ij}

其中x_{ij}表示第i个样本的第j个特征值

i:样本索引,范围从1到m(总样本数)

j:特征索引,范围从1到n(特征数)

  • 偏置更新

b \gets b - \alpha \frac{\partial J}{\partial b}, \quad \frac{\partial J}{\partial b} = \frac{1}{m} \sum_{i=1}^m (\hat{y}_i - y_i)

2.2.1 批量梯度下降(BGD)

每次迭代时使用整个数据集来计算损失函数的梯度,并更新模型参数

w_j \gets w_j - \alpha \frac{1}{m} \sum_{i=1}^m (\hat{y}_i - y_i) x_{ij}, \quad b \gets b - \alpha \frac{1}{m} \sum_{i=1}^m (\hat{y}_i - y_i)

其中

  • m为样本总数
  • \alpha是学习率
  • \hat{y}_i是预测概率

学习率 是一个超参数,用于控制模型参数在每次迭代中更新的步长,决定了参数向梯度反方向移动的距离。

过程
  • 1.计算整个数据集的损失函数梯度
  • 2.根据梯度更新所有权重和偏置
  • 3.重复直到收敛
优点
  • 收敛稳定性:由于使用整个数据集,梯度估计准确,更新方向稳定,易收敛到全局最优
  • 适合小数据集:当数据集较小时,计算成本可接受,性能较好
缺点
  • 计算成本高:每次迭代需要遍历整个数据集,时间复杂度为O(m),对是大数据集效率低
  • 内存需求大:需要将整个数据集加载到内存,适合小型数据集

2.2.2 随机梯度下降(SGD)

每次迭代时随机选择一个样本来计算梯度,并更新模型参数

w_j \gets w_j - \alpha (\hat{y}_i - y_i) x_{ij}, \quad b \gets b - \alpha (\hat{y}_i - y_i)

其中 i是随机选取的样本索引

过程
  • 1.从训练集中随机抽取一个样本
  • 2.计算该样本的损失函数梯度
  • 3.更新权重和偏置
  • 4.重复直到收敛或者达到最大迭代次数

优点

  • 计算效率高:每次迭代只要处理一个样本,时间复杂度为O(1),适合大数据集
缺点
  • 梯度噪声大:仅基于单个样本的梯度计算,可能导致更新方向不稳定,收敛路径震荡

2.2.3 小批量梯度下降(MGD)

每次迭代时使用一小部分样本计算梯度并更新参数,结合了BGD和SGD的特点

w_j \gets w_j - \alpha \frac{1}{n} \sum_{i \in \text{batch}} (\hat{y}_i - y_i) x_{ij}, \quad b \gets b - \alpha \frac{1}{n} \sum_{i \in \text{batch}} (\hat{y}_i - y_i)

其中n为批次大小

过程
  • 1.将数据集随机划分为多个小批量(mini-batch)
  • 2.对每个小批量计算损失函数的梯度
  • 3.更新权重和偏置
  • 4.遍历所有小批量,重复直到收敛

三、正则化

目的:防止过拟合,提高模型泛化能力

3.1 L1正则化

添加权重绝对值之和,易产生稀疏解

J(w, b) = -\frac{1}{m} \sum_{i=1}^m \left[ y_i \log(\hat{y}_i) + (1-y_i) \log(1-\hat{y}_i) \right] + \lambda \sum |w_i|

稀疏解是指在模型的参数向量(如权重w)中,许多元素为0的解

特点:

参数向量中0占主导,非零元素少

对应模型中,只有少数特征起预测作用

3.2 L2正则化

添加权重平方和,使得权重趋向于小值但不完全为0

J(w, b) = -\frac{1}{m} \sum_{i=1}^m \left[ y_i \log(\hat{y}_i) + (1-y_i) \log(1-\hat{y}_i) \right] + \lambda \sum w_i^2

其中 \lambda为正则化参数

四、Logistic回归应用实例:基于二维数据集的分类实践

数据集:包含两个特征 (x1, x2) 和一个二分类标签 (y, 0 或 1)

-0.017612	14.053064	0
-1.395634	4.662541	1
-0.752157	6.538620	0
-1.322371	7.152853	0
0.423363	11.054677	0
0.406704	7.067335	1
0.667394	12.741452	0
-2.460150	6.866805	1
0.569411	9.548755	0
-0.026632	10.427743	0
0.850433	6.920334	1
1.347183	13.175500	0
1.176813	3.167020	1
-1.781871	9.097953	0
-0.566606	5.749003	1
0.931635	1.589505	1
-0.024205	6.151823	1
-0.036453	2.690988	1
-0.196949	0.444165	1
1.014459	5.754399	1
1.985298	3.230619	1
-1.693453	-0.557540	1
-0.576525	11.778922	0
-0.346811	-1.678730	1
-2.124484	2.672471	1
1.217916	9.597015	0
-0.733928	9.098687	0
-3.642001	-1.618087	1
0.315985	3.523953	1
1.416614	9.619232	0
-0.386323	3.989286	1
0.556921	8.294984	1
1.224863	11.587360	0
-1.347803	-2.406051	1
1.196604	4.951851	1
0.275221	9.543647	0
0.470575	9.332488	0
-1.889567	9.542662	0
-1.527893	12.150579	0
-1.185247	11.309318	0
-0.445678	3.297303	1
1.042222	6.105155	1
-0.618787	10.320986	0
1.152083	0.548467	1
0.828534	2.676045	1
-1.237728	10.549033	0
-0.683565	-2.166125	1
0.229456	5.921938	1
-0.959885	11.555336	0
0.492911	10.993324	0
0.184992	8.721488	0
-0.355715	10.325976	0
-0.397822	8.058397	0
0.824839	13.730343	0
1.507278	5.027866	1
0.099671	6.835839	1
-0.344008	10.717485	0
1.785928	7.718645	1
-0.918801	11.560217	0
-0.364009	4.747300	1
-0.841722	4.119083	1
0.490426	1.960539	1
-0.007194	9.075792	0
0.356107	12.447863	0
0.342578	12.281162	0
-0.810823	-1.466018	1
2.530777	6.476801	1
1.296683	11.607559	0
0.475487	12.040035	0
-0.783277	11.009725	0
0.074798	11.023650	0
-1.337472	0.468339	1
-0.102781	13.763651	0
-0.147324	2.874846	1
0.518389	9.887035	0
1.015399	7.571882	0
-1.658086	-0.027255	1
1.319944	2.171228	1
2.056216	5.019981	1
-0.851633	4.375691	1
-1.510047	6.061992	0
-1.076637	-3.181888	1
1.821096	10.283990	0
3.010150	8.401766	1
-1.099458	1.688274	1
-0.834872	-1.733869	1
-0.846637	3.849075	1
1.400102	12.628781	0
1.752842	5.468166	1
0.078557	0.059736	1
0.089392	-0.715300	1
1.825662	12.693808	0
0.197445	9.744638	0
0.126117	0.922311	1
-0.679797	1.220530	1
0.677983	2.556666	1
0.761349	10.693862	0
-2.168791	0.143632	1
1.388610	9.341997	0
0.317029	14.739025	0

代码实现

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression# 1. 加载数据集
data = pd.read_csv('Logistic_testSet.txt', sep='\t', header=None, names=['x1', 'x2', 'y'])
X = data[['x1', 'x2']].values
y = data['y'].values# 2. 训练 Logistic 回归模型
model = LogisticRegression(penalty='l2', C=1.0, solver='lbfgs')
model.fit(X, y)# 3. 评估模型准确率
accuracy = model.score(X, y)
print(f"模型准确率: {accuracy:.4f}")# 4. 设置中文支持
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False# 5. 可视化
# 绘制数据点
plt.scatter(X[y == 0][:, 0], X[y == 0][:, 1], c='blue', label='类别 0', edgecolors='k')
plt.scatter(X[y == 1][:, 0], X[y == 1][:, 1], c='red', label='类别 1', edgecolors='k')# 计算并绘制决策边界直线
w = model.coef_[0]  # 权重 [w1, w2]
b = model.intercept_[0]  # 偏置
x1_min, x1_max = X[:, 0].min(), X[:, 0].max()
x1_line = np.array([x1_min, x1_max])
x2_line = -(w[0] * x1_line + b) / w[1]  # 决策边界: w1*x1 + w2*x2 + b = 0
plt.plot(x1_line, x2_line, 'g-', label='决策边界')# 设置图表属性
plt.xlabel('特征 x1')
plt.ylabel('特征 x2')
plt.title(f'Logistic 回归\n准确率: {accuracy:.4f}')
plt.legend()
plt.grid(True)
plt.show()

 模型初始化:model = LogisticRegression(penalty='l2', C=1.0, solver='lbfgs')

  • penalty='l2':指定正则化类型为L2正则化
  • C=1.0 (C=\frac{1}{\lambda}) ,控制正则化的程度
  • solver=‘lbfgs’指定优化算法为L-BFGS

模型训练:model.fit(X, y) 使用输入数据X和标签y训练模型,优化权重w和偏置b

可视化

http://www.dtcms.com/wzjs/490519.html

相关文章:

  • 网站建设商城关键词工具有哪些
  • 怀化网站建设哪家便宜百度关键词搜索次数
  • wordpress更改链接后网站打不开网站统计哪个好用
  • 营销型网站建设怎么收费网络营销的主要特点有哪些
  • 演出票务网站建设站长工具seo综合查询腾讯
  • 重庆网站制作合作商广东疫情最新数据
  • 网站设计合同互联网营销师报名入口
  • 网站管理规划方案营销策略的思路
  • 做下载网站赚钱网络营销推广方案论文
  • 深圳企业网站定制哈尔滨优化调整人员流动管理
  • 市环保局网站建设方案今天今日头条新闻
  • 青岛网站公司全网搜索
  • 怎么给客户谈做网站aso优化服务平台
  • 做企业网站用什么cms国外免费网站域名服务器查询软件
  • 在一个城市做相亲网站长沙网站推广工具
  • 单位建网站怎么做恶意点击广告软件
  • 威海德嬴网站建设个人网站设计图片
  • 免费书画网站怎么做的色盲测试图片
  • 怎样修改手机网站首页杭州网站优化企业
  • 高端网站改版顾问公司网站seo公司
  • 怎么让客户做网站西点培训前十名学校
  • 做弹幕网站有哪些平台推广网站
  • 外贸b2c商城网站东莞seo排名扣费
  • 品牌网站建设源码竞价推广账户竞价托管公司
  • gif动图素材网站超级外链工具源码
  • 介绍好的免费网站模板下载地址现在网络推广哪家好
  • 网站logo如何替换电商推广平台有哪些
  • 郑州做网站公司 汉狮网络做网站需要什么技术
  • 南开区网站建设建站系统哪个比较好
  • 莱阳网站制作国外免费发产品的b2b平台