当前位置: 首页 > wzjs >正文

蝴蝶传媒网站推广大连seo顾问

蝴蝶传媒网站推广,大连seo顾问,wordpress 微信商城,安装wordpress只有文字1.DeepKE 是一个开源的知识图谱抽取与构建工具,支持cnSchema、低资源、长篇章、多模态的知识抽取工具,可以基于PyTorch实现命名实体识别、关系抽取和属性抽取功能。同时为初学者提供了文档,在线演示, 论文, 演示文稿和海报。 2.下载对应的de…

1.DeepKE 是一个开源的知识图谱抽取与构建工具,支持cnSchema、低资源、长篇章、多模态的知识抽取工具,可以基于PyTorch实现命名实体识别关系抽取属性抽取功能。同时为初学者提供了文档,在线演示, 论文, 演示文稿和海报。

2.下载对应的demo代码

3.准备环境

conda create -n deepke-llm python=3.9
conda activate deepke-llmcd example/llm
pip install -r requirements.txtpip install ujson

 4.demo目录介绍

我们直接运行demo.py,就会出现三个选项,每个选项对应一个文件夹

NER(命名实体识别)- 选项1:
基础模型:bert-base-chinese
任务模型:需要从 DeepKE 下载预训练的 NER 模型
位置:neme_entity_recognition/checkpoints/
RE(关系抽取)- 选项2:
基础模型:bert-base-chinese(已有)
任务模型:需要从 DeepKE 下载预训练的 RE 模型
位置:relation_extraction/checkpoints/
AE(属性抽取)- 选项3:
基础模型:bert-base-chinese(已有)
任务模型:需要从 DeepKE 下载预训练的 AE 模型(lm_epoch1.pth)
位置:attributation_extraction/checkpoints/

5.我们先下载本地模型,我直接在本地下载模型

 git clone https://www.modelscope.cn/tiansz/bert-base-chinese.git

修改选项2和选项3中对应的模型的路径为本地路径

 关系抽取的

属性抽取的

 

6.然后去官网下载预训练模型

我发现属性抽取没有提供预训练模型

但是其余两个有,下载地址如下https://drive.google.com/drive/folders/1wb_QIZduKDwrHeri0s5byibsSQrrJTEv

(https://github.com/zjunlp/DeepKE/blob/main/README_CNSCHEMA_CN.md)

7.将下载好的re和ner对应的文件放到对应的位置

1)re

修改relation_extraction中的demo.py的路径和tokenizer,完整代码如下

import os
import numpy as np
import torch
import random
import pickle
from tqdm import tqdm
import ujson as json
from torch.utils.data import DataLoader
from transformers import AutoConfig, AutoModel, AutoTokenizer
import time
from .process import *def to_official(preds, features):rel2id = json.load(open(f'relation_extraction/data/rel2id.json', 'r'))rel2info = json.load(open(f'relation_extraction/data/rel_info.json', 'r'))entity = json.load(open(f'relation_extraction/data/output.json', 'r'))id2rel = {value: key for key, value in rel2id.items()}h_idx, t_idx, title = [], [], []for f in features:hts = f["hts"]h_idx += [ht[0] for ht in hts]t_idx += [ht[1] for ht in hts]title += [f["title"] for ht in hts]res = []for i in range(preds.shape[0]):pred = preds[i]pred = np.nonzero(pred)[0].tolist()for p in pred:if p != 0:h_entity, t_entity = '', ''for en in entity[0]['vertexSet'][h_idx[i]]:if len(en['name']) > len(h_entity):h_entity = en['name']for en in entity[0]['vertexSet'][t_idx[i]]:if len(en['name']) > len(t_entity):t_entity = en['name']res.append({'h': h_entity,'t': t_entity,'r': rel2info[id2rel[p]],})return resclass ReadDataset:def __init__(self, tokenizer, max_seq_Length: int = 1024,transformers: str = 'bert') -> None:self.transformers = transformersself.tokenizer = tokenizerself.max_seq_Length = max_seq_Lengthdef read(self, file_in: str):save_file = file_in.split('.json')[0] + '_' + self.transformers + '.pkl'return read_docred(self.transformers, file_in, save_file, self.tokenizer, self.max_seq_Length)def read_docred(transfermers, file_in, save_file, tokenizer, max_seq_length=1024):max_len = 0up512_num = 0i_line = 0pos_samples = 0neg_samples = 0features = []docred_rel2id = json.load(open(f'relation_extraction/data/rel2id.json', 'r'))if file_in == "":return Nonewith open(file_in, "r") as fh:data = json.load(fh)if transfermers == 'albert':entity_type = ["-", "ORG", "-",  "LOC", "-",  "TIME", "-",  "PER", "-", "MISC", "-", "NUM"]for sample in data:sents = []sent_map = []entities = sample['vertexSet']entity_start, entity_end = [], []mention_types = []for entity in entities:for mention in entity:sent_id = mention["sent_id"]pos = mention["pos"]entity_start.append((sent_id, pos[0]))entity_end.append((sent_id, pos[1] - 1))mention_types.append(mention['type'])for i_s, sent in enumerate(sample['sents']):new_map = {}for i_t, token in enumerate(sent):tokens_wordpiece = tokenizer.tokenize(token)if (i_s, i_t) in entity_start:t = entity_start.index((i_s, i_t))if transfermers == 'albert':mention_type = mention_types[t]special_token_i = entity_type.index(mention_type)special_token = ['[unused' + str(special_token_i) + ']']else:special_token = ['*']tokens_wordpiece = special_token + tokens_wordpieceif (i_s, i_t) in entity_end:t = entity_end.index((i_s, i_t))if transfermers == 'albert':mention_type = mention_types[t]special_token_i = entity_type.index(mention_type) + 50special_token = ['[unused' + str(special_token_i) + ']']else:special_token = ['*']tokens_wordpiece = tokens_wordpiece + special_tokennew_map[i_t] = len(sents)sents.extend(tokens_wordpiece)new_map[i_t + 1] = len(sents)sent_map.append(new_map)if len(sents)>max_len:max_len=len(sents)if len(sents)>512:up512_num += 1train_triple = {}if "labels" in sample:for label in sample['labels']:evidence = label['evidence']r = int(docred_rel2id[label['r']])if (label['h'], label['t']) not in train_triple:train_triple[(label['h'], label['t'])] = [{'relation': r, 'evidence': evidence}]else:train_triple[(label['h'], label['t'])].append({'relation': r, 'evidence': evidence})entity_pos = []for e in entities:entity_pos.append([])mention_num = len(e)for m in e:start = sent_map[m["sent_id"]][m["pos"][0]]end = sent_map[m["sent_id"]][m["pos"][1]]entity_pos[-1].append((start, end,))relations, hts = [], []# Get positive samples from datasetfor h, t in train_triple.keys():relation = [0] * len(docred_rel2id)for mention in train_triple[h, t]:relation[mention["relation"]] = 1evidence = mention["evidence"]relations.append(relation)hts.append([h, t])pos_samples += 1# Get negative samples from datasetfor h in range(len(entities)):for t in range(len(entities)):if h != t and [h, t] not in hts:relation = [1] + [0] * (len(docred_rel2id) - 1)relations.append(relation)hts.append([h, t])neg_samples += 1assert len(relations) == len(entities) * (len(entities) - 1)if len(hts)==0:print(len(sent))sents = sents[:max_seq_length - 2]input_ids = tokenizer.convert_tokens_to_ids(sents)input_ids = tokenizer.build_inputs_with_special_tokens(input_ids)i_line += 1feature = {'input_ids': input_ids,'entity_pos': entity_pos,'labels': relations,'hts': hts,'title': sample['title'],}features.append(feature)with open(file=save_file, mode='wb') as fw:pickle.dump(features, fw)return featuresdef collate_fn(batch):max_len = max([len(f["input_ids"]) for f in batch])input_ids = [f["input_ids"] + [0] * (max_len - len(f["input_ids"])) for f in batch]input_mask = [[1.0] * len(f["input_ids"]) + [0.0] * (max_len - len(f["input_ids"])) for f in batch]input_ids = torch.tensor(input_ids, dtype=torch.long)input_mask = torch.tensor(input_mask, dtype=torch.float)entity_pos = [f["entity_pos"] for f in batch]labels = [f["labels"] for f in batch]hts = [f["hts"] for f in batch]output = (input_ids, input_mask, labels, entity_pos, hts )return outputdef report(args, model, features):device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")dataloader = DataLoader(features, batch_size=args.test_batch_size, shuffle=False, collate_fn=collate_fn, drop_last=False)preds = []for batch in dataloader:model.eval()inputs = {'input_ids': batch[0].to(device),'attention_mask': batch[1].to(device),'entity_pos': batch[3],'hts': batch[4],}with torch.no_grad():pred = model(**inputs)pred = pred.cpu().numpy()pred[np.isnan(pred)] = 0preds.append(pred)preds = np.concatenate(preds, axis=0).astype(np.float32)preds = to_official(preds, features)return predsclass Config(object):unet_in_dim=3unet_out_dim=256max_height=42down_dim=256channel_type='context-based'unet_out_dim=256test_batch_size=2cfg = Config()def color(text, color="\033[1;34m"): return color+text+"\033[0m"def doc_re():sentence = input(f"Enter the {color('sentence')}: ")input_file = 'relation_extraction/input.txt'with open(input_file , 'w') as f:f.write(sentence)txt2json(input_file, 'relation_extraction/data/output.json')device = torch.device("cpu")bert_path = '/mnt/workspace/DeepKE-demo/bert-base-chinese'config = AutoConfig.from_pretrained(bert_path, num_labels=97)tokenizer = AutoTokenizer.from_pretrained(bert_path)Dataset = ReadDataset(tokenizer, 1024, transformers='bert')test_file = 'relation_extraction/data/output.json'test_features = Dataset.read(test_file)model = AutoModel.from_pretrained(bert_path, from_tf=False, config=config)config.cls_token_id = tokenizer.cls_token_idconfig.sep_token_id = tokenizer.sep_token_idconfig.transformer_type = 'bert'seed = 111random.seed(seed)np.random.seed(seed)torch.manual_seed(seed)if torch.cuda.is_available():torch.cuda.manual_seed_all(seed)model = DocREModel(config, cfg, model, num_labels=4)checkpoint_path = 'relation_extraction/checkpoints/re_bert.pth'if not os.path.exists(checkpoint_path):raise FileNotFoundError(f"预训练模型文件不存在:{checkpoint_path},请确保已下载模型文件并放置在正确位置。")# 加载预训练权重# model.load_state_dict(torch.load(checkpoint_path, map_location='cpu'))# 加载预训练权重并处理键名不匹配state_dict = torch.load(checkpoint_path, map_location='cpu')new_state_dict = {}for k, v in state_dict.items():if k.startswith('bert.'):new_k = 'bert_model.' + k[5:]  # 将 'bert.' 替换为 'bert_model.'new_state_dict[new_k] = velse:new_state_dict[k] = v# 加载可以加载的权重model_dict = model.state_dict()pretrained_dict = {k: v for k, v in new_state_dict.items() if k in model_dict}model_dict.update(pretrained_dict)model.load_state_dict(model_dict, strict=False)model.to(device)pred = report(cfg, model, test_features)with open(input_file.split('.txt')[0]+'.json', "w") as fh:json.dump(pred, fh)print()print(f"The {color('triplets')} are as follow:")print()for i in pred:print(i)print()if __name__ == "__main__":doc_re()

同时修改/mnt/workspace/DeepKE-demo/relation_extraction/process/model.py

def encode(self, input_ids, attention_mask,entity_pos):config = self.configif config.transformer_type == "albert":start_tokens = [config.cls_token_id]end_tokens = [config.sep_token_id]elif config.transformer_type == "bert":start_tokens = [config.cls_token_id]end_tokens = [config.sep_token_id]elif config.transformer_type == "roberta":start_tokens = [config.cls_token_id]end_tokens = [config.sep_token_id, config.sep_token_id]sequence_output, attention = process_long_input(self.bert_model, input_ids, attention_mask, start_tokens, end_tokens)return sequence_output, attention

测试句子有格式要求:{[0][PER]欧阳菲菲}演唱的{[1][SONG]没有你的夜晚},出自专辑{[2][ALBUM]拥抱}

最后结果

2)ner

将下载好的checkpoint_bert.zip移动到ner文件夹下并解压缩,然后运行,记得重命名为checkpointints

运行报错,标签老是对不上,重新训练

/mnt/workspace/DeepKE/example/ner/standard路径下

下载数据集

wget 120.27.214.45/Data/ner/standard/data.tar.gztar -xzvf data.tar.gz

然后修改配置,改为自己的路径名

/mnt/workspace/DeepKE/example/ner/standard/conf/hydra/model/bert.yaml

安装环境依赖(重新建一个conda环境吧,训练不等同于推理)conda create -n deepke python=3.8conda activate deepkepip install pip==24.0
在DeepKE源码根目录下(git clone https://github.com/zjunlp/DeepKE.git)
pip install --use-pep517 seqeval
pip install -r requirements.txtpython setup.py installpython setup.py develop
pip install safetensors

/mnt/workspace/DeepKE/example/ner/standard路径下

运行python run_bert.py 

如果用gpu训练的话,需要

pip uninstall torch torchvision torchaudio -ypip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113

24g显存,使用率是70%,训练了两个小时左右

but,效果并不好

http://www.dtcms.com/wzjs/488546.html

相关文章:

  • 建设网站必备的三大要素百度网盘免费下载
  • 如何做好网站建设衡阳seo优化首选
  • 政府建设网站邯郸seo优化公司
  • 温州网站建设新手网站域名备案查询
  • 制作网站是什么专业seo观察网
  • 做调查赚钱的网站有哪些手机百度一下百度
  • 网站建设进展情况汇报百度软件中心官网
  • 婴儿衣服做的网站百度官网认证
  • ftp下载wordpress5g网络优化工程师
  • 做一个购物网站需要什么技术自动引流免费app
  • 教育培训机构怎么建设网站seo关键词排名优化评价
  • 公众号交易平台太原seo网站管理
  • 在百度做广告多少钱seo模拟点击软件
  • 电子商务网站建设类论文市场推广方案怎么做
  • wordpress免登陆接口网站外链优化方法
  • 建设系统网站首页周口seo
  • 禅城容桂网站制作seo在线优化工具
  • 织梦后台生成网站地图平台推广策略都有哪些
  • 响应式网站建设服务免费创建网站
  • 购物网站建设的意义与目的关键词可以分为哪三类
  • 做网站找哪家靠谱网络营销是什么专业类别
  • 如何获取网站域名证书河北seo技术培训
  • 遵义网站建设txwl广东免费网络推广软件
  • 备案网站转入阿里云常用的网络营销方法
  • 如何写一份食品的网站建设规划怎么接广告推广
  • 推荐一些做网站网络公司百度应用市场app下载
  • wordpress百度数据杭州seo联盟
  • 福州培训网站建设近两年成功的网络营销案例及分析
  • 做网站公司共有几处密码交换链接
  • 桂林网站优化注意事项产品推广策划