当前位置: 首页 > wzjs >正文

百度 手机网站 友好性正版seo搜索引擎

百度 手机网站 友好性,正版seo搜索引擎,团队建设 深度好文分享的网站,野花韩国视频在线观看免费高清系列文章目录 目录 系列文章目录 前言 一、Lerobot So100/So101 微调教程 1.1 数据集 1.2 微调 1.3 开环评估 1.4 部署 二、Unitree G1 微调 2.1 下载数据集 2.2 尝试加载数据集并可视化它 2.3 微调 2.4 开环评估 2.5 部署 前言 本笔记本是一份关于如何在新的数据…

系列文章目录

    目录

    系列文章目录

    前言

    一、Lerobot So100/So101 微调教程

    1.1 数据集

    1.2 微调

    1.3 开环评估

    1.4 部署

    二、Unitree G1 微调

    2.1 下载数据集

    2.2 尝试加载数据集并可视化它

    2.3 微调

    2.4 开环评估

    2.5 部署


    前言

            本笔记本是一份关于如何在新的数据集上对GR00T-N1预训练模型进行微调的教程。


    一、Lerobot So100/So101 微调教程

            GR00T-N1.5 适用于各种机器人形态的用户。基于 Huggingface 的低成本 So101 Lerobot 机械臂,用户可通过 new_embodiment 标签在自己的机器人上对 GR00T-N1.5 进行微调。

    So100 Strawberry and Grape PickingSo101 Table Cleanup Task

    {width=400}

    {width=400}

    DatasetObservationViz Link
    so101-table-cleanupDual camera views of table cleanup taskLink
    so100_strawberry_grapeSingle camera view of strawberry and grape pickingLink
    tictac-botSingle camera view of a tic-tac-toe boardLink

    1.1 数据集

            用户可以使用任何 lerobot 数据集进行微调。在本教程中,我们将首先使用一个示例数据集:so101-table-cleanup

    请注意,此实现未包含在我们的预训练数据集混合中。

    首先,下载数据集

    huggingface-cli download \--repo-type dataset youliangtan/so101-table-cleanup \--local-dir ./demo_data/so101-table-cleanup

            其次,复制模态文件

    modality.json 文件提供了关于状态和动作模态的额外信息,以使其与“GR00T”兼容。将 examples/so100_dualcam__modality.json 复制到数据集 <DATASET_PATH>/meta/modality.json。

            对于类似 so101-table-cleanup 数据集的双摄像头设置,请执行以下操作:

    cp examples/so100_dualcam__modality.json ./demo_data/so101-table-cleanup/meta/modality.json

            对于单摄像头设置,如 so100_strawberry_grape 数据集,请执行以下操作:

    cp examples/so100__modality.json ./demo_data/so100_strawberry_grape/meta/modality.json

    然后我们可以使用LeRobotSingleDataset类加载数据集。

    1.2 微调

            微调可以通过使用我们的微调脚本/gr00t_finetune.py来完成,因为它支持“new-embodiment”标签。

    python scripts/gr00t_finetune.py \--dataset-path /datasets/so101-table-cleanup/ \--num-gpus 1 \--batch-size 64 \--output-dir ~/so101-checkpoints  \--max-steps 10000 \--data-config so100_dualcam \--video-backend torchvision_av

    将批处理大小调整为与您的GPU内存匹配。

    1.3 开环评估

            训练完成后,您可以运行以下命令来可视化微调后的策略。

    python scripts/eval_policy.py --plot \--embodiment_tag new_embodiment \--model_path <YOUR_CHECKPOINT_PATH> \--data_config so100_dualcam \--dataset_path /datasets/so101-table-cleanup/ \--video_backend torchvision_av \--modality_keys single_arm gripper

            这是在训练策略7000步后的结果。

            

            经过更多步骤的训练后,模型性能将显著提升。

            太棒了!您已成功在新的实现上对GR00T-N1.5进行了微调。

    1.4 部署

            首先,确保数据可重放,请参考lerobot文档:https://huggingface.co/docs/lerobot/so101

            在机器人上评估策略:

    python eval_lerobot.py \--robot.type=so101_follower \--robot.port=/dev/ttyACM0 \--robot.id=lil_guy \--robot.cameras="{ wrist: {type: opencv, index_or_path: 9, width: 640, height: 480, fps: 30}, front: {type: opencv, index_or_path: 15, width: 640, height: 480, fps: 30}}" \--policy_host=10.112.209.136 \--lang_instruction="Grab pens and place into pen holder."

    有关部署的更多详细信息,请参阅笔记本:5_policy_deployment.md

    二、Unitree G1 微调

            本节展示如何在 Unitree G1 机器人上进行微调,作为新的实现方式。数据集可从以下链接获取:nvidia/PhysicalAI-Robotics-GR00T-Teleop-G1

    规格:

    • 观察:43 维向量化状态(全身和双手的关节位置)
    • 动作:43 维向量化动作(全身和双手的关节位置)
    • 视频:RGB 视频,分辨率为 640x480,帧率为 20fps
    • 语言指令:
      • “从桌子上拿起苹果,把它放进篮子里。”
      • “从桌子上拿起梨并放入篮子。”
      • “从桌子上拿起葡萄并放入篮子。”
      • “从桌子上拿起星果并放入篮子。”

    2.1 下载数据集

    huggingface-cli download \--repo-type dataset nvidia/PhysicalAI-Robotics-GR00T-Teleop-G1 \--local-dir ./datasets/

    2.2 尝试加载数据集并可视化它

            示例:加载苹果数据集的第一集

    python scripts/load_dataset.py --dataset-path datasets/PhysicalAI-Robotics-GR00T-Teleop-G1/g1-pick-apple/ --plot-state-action### Similar for other fruits
    # Switch to other fruits -- pear, grapes, starfruit

            ·您应看到以下图表:

    2.3 微调

            在此,我们可以提供用于微调的數據集列表。我们将使用包含苹果、梨、葡萄和星果采摘任务的混合数据集对模型进行微调。

    dataset_list=("datasets/PhysicalAI-Robotics-GR00T-Teleop-G1/g1-pick-apple/""datasets/PhysicalAI-Robotics-GR00T-Teleop-G1/g1-pick-pear/""datasets/PhysicalAI-Robotics-GR00T-Teleop-G1/g1-pick-grapes/""datasets/PhysicalAI-Robotics-GR00T-Teleop-G1/g1-pick-starfruit/"
    )python scripts/gr00t_finetune.py \--dataset-path ${dataset_list[@]} \--num-gpus 1 --batch-size 95  --output-dir ~/checkpoints/full-g1-mix-fruits/  \--data-config unitree_g1 --max-steps 15000

    注意:由于该数据集采用H.264编码格式录制,因此在加载视频时需使用decord后端。

    2.4 开环评估

            示例:评估苹果数据集

    python scripts/eval_policy.py --plot \--embodiment_tag new_embodiment \--model_path <YOUR_CHECKPOINT_PATH> \--data_config unitree_g1 \--dataset_path datasets/PhysicalAI-Robotics-GR00T-Teleop-G1/g1-pick-apple/ \--video_backend decord \--modality_keys left_arm right_arm

            我们可以看出,策略对动作的预测似乎与真实情况非常接近,这表明微调是成功的。然而,对于策略的实际性能,我们需要在真实机器人上进行评估。

    2.5 部署

            G1 的部署脚本在此未提供。但该管道与 so100 微调管道类似。

    http://www.dtcms.com/wzjs/487547.html

    相关文章:

  • wordpress文章能发链接吗seo研究学院
  • 郑州网站建设知识分享宁波seo外包引流推广
  • 做网站用什么软件最简单中国法律服务网app最新下载
  • 公司网站主页图片百度网站推广怎么做
  • 网站制作模板免费下载app优化建议
  • 网站正在建设中的代码网站统计
  • 兰州网站建设加王道下拉网站推广软件有哪些
  • linux建网站关键词搜索排名推广
  • 苏州做管网gis的网站青岛seo招聘
  • 营销网站的问题与优势最经典的营销案例
  • 实验室建设供应商网站自己建网站要多少钱
  • 网站框架类型网站建设网站推广
  • 现在去成都需要隔离吗?百度seo收录软件
  • 有没有做网站源代码修改的自己在家做电商
  • 营销型网站建设要点申请自己的网站
  • 网站具有购买功能需要怎么做seo待遇
  • 做国际贸易用什么网站长春网络科技公司排名
  • 网站怎么做宣传网站分析报告
  • 设计方案审核合格后由谁签字确认宁波seo网络推广定制多少钱
  • 世界各国o2o响应式网站在线搜索资源
  • 制作公司网站设计要求百度站长工具数据提交
  • 做彩铃的网站重庆电子商务seo
  • 课程网站如何建设方案网络推广经验
  • 公司网站流量大 怎么办steam交易链接在哪里看
  • 优质做网站哪家好深圳网站公司排名
  • 做网站用php还是python关键词优化推广公司哪家好
  • 秦皇岛做网站公司汉狮价格如何建立网站
  • 网站后台管理器怎么做微信营销方法
  • 做网站图片无法显示的原因百度发布
  • 如皋电子商城网站建设网站排名优化手机