当前位置: 首页 > wzjs >正文

医疗网站做药品是干嘛今日热点新闻事件标题

医疗网站做药品是干嘛,今日热点新闻事件标题,移动网站套餐,网站建设的目的102.二叉树的层序遍历 给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。 示例 1: 输入:root [3,9,20,null,null,15,7] 输出:[[3],[9,20],[15,7]]示例 …

102.二叉树的层序遍历

给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。

示例 1:

输入:root = [3,9,20,null,null,15,7]
输出:[[3],[9,20],[15,7]]

示例 2:

输入:root = [1]
输出:[[1]]

示例 3:

输入:root = []
输出:[]

提示:

  • 树中节点数目在范围 [0, 2000] 内
  • -1000 <= Node.val <= 1000

解题思路1

用一个全局列表 ans 表示所有层,其中 ans.get(deep) 对应第 deep 层的节点值集合。每次递归时,deep 表示当前节点所在的层号(从 0 开始)。如果 ans 的大小不足以容纳当前层(即 ans.size() < deep + 1),就添加一个新的空列表。然后将当前节点的值加入对应层的列表中。

代码1

class Solution {// 定义一个全局的 List<List<Integer>> 用于存储层序遍历的结果,每一层是一个 List<Integer>List<List<Integer>> ans = new ArrayList<>();// 主方法,接收二叉树的根节点,返回层序遍历结果public List<List<Integer>> levelOrder(TreeNode root) {Integer deep = 0;  // 初始化深度为 0,表示从根节点所在的第 0 层开始fun1(root, deep);  // 调用辅助方法 fun1 开始递归遍历return ans;        // 返回最终的层序遍历结果}// 辅助方法,使用递归按深度填充每一层的节点值public void fun1(TreeNode root, Integer deep) {if (root == null) {  // 如果当前节点为空,直接返回(递归的终止条件)return;}// 检查当前深度是否超出现有层数,如果是,则添加一个新的空列表表示新的一层if (ans.size() < deep + 1) {ans.add(new ArrayList<>());  // 为新的一层创建一个独立的 ArrayList}// 将当前节点的值添加到对应深度的列表中ans.get(deep).add(root.val);// 递归处理左子树,深度加 1(进入下一层)fun1(root.left, deep + 1);// 递归处理右子树,深度加 1(进入下一层)fun1(root.right, deep + 1);}
}

解题思路2

队列遵循“先进先出”(FIFO)的特性,先将根节点入队,然后逐层处理节点。每处理一层时,记录当前队列大小(即该层节点数),依次移除每个节点并访问,同时将其左右子节点加入队列,为下一层做准备。

代码2 

class Solution {// 定义全局结果列表,存储层序遍历的每一层节点值List<List<Integer>> ans = new ArrayList<>();// 定义队列,用于按层存储待处理的节点Queue<TreeNode> queue = new ArrayDeque<>();// 主方法,接收二叉树根节点,返回层序遍历结果public List<List<Integer>> levelOrder(TreeNode root) {if (root == null) {  // 如果根节点为空,直接返回空的结果列表return ans;}queue.offer(root);   // 将根节点加入队列,作为第一层开始while (!queue.isEmpty()) {  // 当队列不为空时,继续处理每一层int len = queue.size();  // 获取当前层的节点数量List<Integer> list = new ArrayList<>();  // 创建当前层的节点值列表while (len > 0) {  // 遍历当前层的所有节点TreeNode node = new TreeNode();  // 创建一个新节点(多余,稍后改进)node = queue.poll();  // 从队列头部移除并获取当前节点(覆盖上面的新节点)list.add(node.val);   // 将当前节点值加入当前层列表if (node.left != null) queue.offer(node.left);   // 如果有左子节点,加入队列if (node.right != null) queue.offer(node.right); // 如果有右子节点,加入队列len--;  // 当前层节点计数减 1}ans.add(list);  // 当前层处理完毕,将其加入结果列表}return ans;  // 返回完整的层序遍历结果}
}

107.二叉树的层序遍历2

给你二叉树的根节点 root ,返回其节点值 自底向上的层序遍历 。 (即按从叶子节点所在层到根节点所在的层,逐层从左向右遍历)

示例 1:

输入:root = [3,9,20,null,null,15,7]
输出:[[15,7],[9,20],[3]]

示例 2:

输入:root = [1]
输出:[[1]]

示例 3:

输入:root = []
输出:[]

提示:

  • 树中节点数目在范围 [0, 2000] 内
  • -1000 <= Node.val <= 1000

解题思路

  • 先用标准的层序遍历(BFS)从顶向下获取所有层的节点值,存储在 ans 中,结果是从根到叶子的顺序([[3], [9, 20], [15, 7]])。
  • 使用 Collections.reverse() 将 ans 反转,变成从叶子到根的顺序([[15, 7], [9, 20], [3]])。

代码 

class Solution {// 标准层序遍历(从顶向下)private List<List<Integer>> levelOrder(TreeNode root) {List<List<Integer>> ans = new ArrayList<>();  // 局部变量,避免状态残留if (root == null) {return ans;}Queue<TreeNode> queue = new ArrayDeque<>();  // 局部队列queue.offer(root);while (!queue.isEmpty()) {int len = queue.size();List<Integer> list = new ArrayList<>();for (int i = 0; i < len; i++) {  // 用 for 循环替代 whileTreeNode node = queue.poll();  // 直接获取节点list.add(node.val);if (node.left != null) queue.offer(node.left);if (node.right != null) queue.offer(node.right);}ans.add(list);}return ans;}// 自底向上层序遍历public List<List<Integer>> levelOrderBottom(TreeNode root) {List<List<Integer>> result = levelOrder(root);  // 获取从顶向下的结果Collections.reverse(result);  // 反转列表,实现自底向上return result;}
}

199.二叉树的右视图

给定一个二叉树的 根节点 root,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值。

示例 1:

输入:root = [1,2,3,null,5,null,4]

输出:[1,3,4]

解释:

示例 2:

输入:root = [1,2,3,4,null,null,null,5]

输出:[1,3,4,5]

解释:

示例 3:

输入:root = [1,null,3]

输出:[1,3]

示例 4:

输入:root = []

输出:[]

提示:

  • 二叉树的节点个数的范围是 [0,100]
  • -100 <= Node.val <= 100 

解题思路

  • 通过深度参数(deep)跟踪当前节点所在的层号。
  • 对于每一层,优先保留最右侧节点的值。递归时先访问左子树,再访问右子树,这样右子树的值会覆盖同一层的左子树值。
  • list 的索引对应层号,list.get(deep) 表示第 deep 层的最右侧节点值。

代码 

class Solution {public List<Integer> rightSideView(TreeNode root) {List<Integer> list = new ArrayList<>();  // 局部变量,避免状态残留fun1(root, 0, list);  // 传入 list 作为参数return list;}private void fun1(TreeNode root, int deep, List<Integer> list) {if (root == null) {  // 空节点返回return;}// 确保 list 大小足够当前深度while (list.size() <= deep) {list.add(0);  // 添加默认值(可以优化)}list.set(deep, root.val);  // 设置当前深度的值(右子树会覆盖左子树)fun1(root.left, deep + 1, list);   // 先递归左子树fun1(root.right, deep + 1, list);  // 后递归右子树(右子树值保留)}
}

429.N叉树的层序遍历

给定一个 N 叉树,返回其节点值的层序遍历。(即从左到右,逐层遍历)。

树的序列化输入是用层序遍历,每组子节点都由 null 值分隔(参见示例)。

示例 1:

输入:root = [1,null,3,2,4,null,5,6]
输出:[[1],[3,2,4],[5,6]]

示例 2:

输入:root = [1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null,null,14]
输出:[[1],[2,3,4,5],[6,7,8,9,10],[11,12,13],[14]]

提示:

  • 树的高度不会超过 1000
  • 树的节点总数在 [0, 104] 之间

解题思路

  • 队列遵循“先进先出”(FIFO)特性,先将根节点入队,然后逐层处理节点。
  • 每处理一层时,记录当前队列大小(len),依次移除每个节点,访问其值,并将其所有子节点加入队列,为下一层做准备。

代码 

class Solution {// 主方法,返回 N 叉树的层序遍历结果public List<List<Integer>> levelOrder(Node root) {List<List<Integer>> ans = new ArrayList<>();  // 存储每层节点值的列表if (root == null) {  // 如果根节点为空,返回空结果return ans;}Queue<Node> queue = new ArrayDeque<>();  // 创建队列用于 BFSqueue.offer(root);  // 将根节点加入队列,作为第一层while (!queue.isEmpty()) {  // 当队列不为空时,继续处理int len = queue.size();  // 获取当前层的节点数量List<Integer> list = new ArrayList<>();  // 存储当前层的节点值for (int i = 0; i < len; i++) {  // 遍历当前层的所有节点Node node = queue.poll();  // 从队列头部移除并获取当前节点list.add(node.val);  // 将节点值加入当前层列表for (Node child : node.children) {  // 遍历当前节点的所有子节点if (child != null) {  // 检查子节点非空queue.offer(child);  // 将子节点加入队列,准备下一层}}}ans.add(list);  // 当前层处理完毕,加入结果列表}return ans;  // 返回完整的层序遍历结果}
}

637.二叉树的层平均值

给定一个非空二叉树的根节点 root , 以数组的形式返回每一层节点的平均值。与实际答案相差 10-5 以内的答案可以被接受。

示例 1:

输入:root = [3,9,20,null,null,15,7]
输出:[3.00000,14.50000,11.00000]
解释:第 0 层的平均值为 3,第 1 层的平均值为 14.5,第 2 层的平均值为 11 。
因此返回 [3, 14.5, 11] 。

示例 2:

输入:root = [3,9,20,15,7]
输出:[3.00000,14.50000,11.00000]

提示:

  • 树中节点数量在 [1, 104] 范围内
  • -231 <= Node.val <= 231 - 1

解题思路

  • 层序遍历部分:使用递归方法 fun1,以深度参数(deep)追踪当前节点所在的层号。全局列表 ans 存储每一层的节点值,ans.get(deep) 表示第 deep 层的节点值集合。递归时,先访问当前节点并记录值,再处理左子树和右子树,通过深度确保节点值按层组织。
  • 平均值计算部分:在 averageOfLevels 中,遍历 ans 的每一层,使用 long 变量 sum 累加该层节点值,然后除以节点数(list1.size())得到平均值,结果以 double 类型存储在 ave 中。
  • 执行流程:从根节点开始(deep = 0),递归填充 ans,完成后遍历 ans 计算每层平均值,最终返回 ave。

代码 

class Solution {List<List<Integer>> ans = new ArrayList<>();  // 定义全局列表,存储每层的节点值public List<Double> averageOfLevels(TreeNode root) {List<Double> ave = new ArrayList<>();  // 定义结果列表,存储每层的平均值levelOrder(root);  // 调用层序遍历方法,填充 ansfor (List<Integer> list1 : ans) {  // 遍历每一层的节点值列表long sum = 0;  // 初始化当前层的总和for (int i = 0; i < list1.size(); i++) {  // 遍历当前层的所有节点值sum += (Integer) list1.get(i);  // 累加节点值到 sum}ave.add((double) sum / list1.size());  // 计算当前层平均值并加入结果}return ave;  // 返回每层平均值的列表}public List<List<Integer>> levelOrder(TreeNode root) {Integer deep = 0;  // 初始化深度为 0,表示根节点层fun1(root, deep);  // 调用递归方法,开始层序遍历return ans;  // 返回层序遍历结果}public void fun1(TreeNode root, Integer deep) {if (root == null) {  // 如果当前节点为空,返回return;}if (ans.size() < deep + 1) {  // 如果当前深度超出 ans 大小ans.add(new ArrayList<>());  // 为新层添加一个空列表}ans.get(deep).add(root.val);  // 将当前节点值加入对应层的列表fun1(root.left, deep + 1);  // 递归处理左子树,深度加 1fun1(root.right, deep + 1);  // 递归处理右子树,深度加 1}
}

104.二叉树的最大深度

给定一个二叉树 root ,返回其最大深度。

二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。

示例 1:

输入:root = [3,9,20,null,null,15,7]
输出:3

示例 2:

输入:root = [1,null,2]
输出:2

提示:

  • 树中节点的数量在 [0, 104] 区间内。
  • -100 <= Node.val <= 100

解题思路

利用队列的“先进先出”(FIFO)特性,按层遍历二叉树。每处理完一层,深度计数器 length 增加 1,最终 length 表示从根节点到最远叶子节点的层数,即最大深度。

代码 

class Solution {Deque<TreeNode> deque = new ArrayDeque<>();  // 定义双端队列,用于存储待处理的节点int length = 0;  // 定义变量,记录二叉树的最大深度public int maxDepth(TreeNode root) {if (root == null) {  // 如果根节点为空,返回深度 0return 0;}deque.offer(root);  // 将根节点加入队列,作为第一层while (!deque.isEmpty()) {  // 当队列不为空时,继续处理每一层int len = deque.size();  // 获取当前层的节点数量length++;  // 每处理一层,深度加 1while (len > 0) {  // 遍历当前层的所有节点TreeNode node = new TreeNode();  // 创建一个新节点(占位)node = deque.poll();  // 从队列头部移除并获取当前节点len--;  // 当前层节点计数减 1if (node.left != null) deque.offer(node.left);   // 如果有左子节点,加入队列if (node.right != null) deque.offer(node.right); // 如果有右子节点,加入队列}}return length;  // 返回二叉树的最大深度}
}

111.二叉树的最小深度

给定一个二叉树,找出其最小深度。

最小深度是从根节点到最近叶子节点的最短路径上的节点数量。

说明:叶子节点是指没有子节点的节点。

示例 1:

输入:root = [3,9,20,null,null,15,7]
输出:2

示例 2:

输入:root = [2,null,3,null,4,null,5,null,6]
输出:5

提示:

  • 树中节点数的范围在 [0, 105] 内
  • -1000 <= Node.val <= 1000

解题思路

利用队列的“先进先出”(FIFO)特性,按层遍历二叉树,从根节点开始逐层检查。当遇到第一个叶子节点(没有子节点的节点)时,返回当前深度 length,即为最小深度。

代码 

class Solution {Deque<TreeNode> deque = new ArrayDeque<>();  // 定义双端队列,用于存储待处理的节点int length = 0;  // 定义变量,记录当前处理的深度public int minDepth(TreeNode root) {if (root == null) {  // 如果根节点为空,返回深度 0return 0;}deque.offer(root);  // 将根节点加入队列,作为第一层while (!deque.isEmpty()) {  // 当队列不为空时,继续处理每一层int len = deque.size();  // 获取当前层的节点数量length++;  // 每处理一层,深度加 1while (len > 0) {  // 遍历当前层的所有节点TreeNode node = new TreeNode();  // 创建一个新节点(占位)node = deque.poll();  // 从队列头部移除并获取当前节点len--;  // 当前层节点计数减 1if (node.left == null && node.right == null) {  // 如果当前节点是叶子节点return length;  // 返回当前深度作为最小深度}if (node.left != null) deque.offer(node.left);   // 如果有左子节点,加入队列if (node.right != null) deque.offer(node.right); // 如果有右子节点,加入队列}}return length;  // 返回最终深度}
}

116.填充每一个节点的下一个右侧节点指针

给定一个 完美二叉树 ,其所有叶子节点都在同一层,每个父节点都有两个子节点。二叉树定义如下:

struct Node {int val;Node *left;Node *right;Node *next;
}

填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL

初始状态下,所有 next 指针都被设置为 NULL

示例 1:

输入:root = [1,2,3,4,5,6,7]
输出:[1,#,2,3,#,4,5,6,7,#]
解释:给定二叉树如图 A 所示,你的函数应该填充它的每个 next 指针,以指向其下一个右侧节点,如图 B 所示。序列化的输出按层序遍历排列,同一层节点由 next 指针连接,'#' 标志着每一层的结束。

示例 2:

输入:root = []
输出:[]

提示:

  • 树中节点的数量在 [0, 212 - 1] 范围内
  • -1000 <= node.val <= 1000

进阶:

  • 你只能使用常量级额外空间。
  • 使用递归解题也符合要求,本题中递归程序占用的栈空间不算做额外的空间复杂度。

解题思路

利用队列的“先进先出”(FIFO)特性,按层遍历二叉树。在每一层中,将当前节点的 next 指针设置为队列中的下一个节点(即右侧节点),从而连接同一层的节点。

代码

class Solution {Deque<Node> deque = new ArrayDeque();  // 定义双端队列,用于存储待处理的节点public Node connect(Node root) {if (root == null) {  // 如果根节点为空,返回 nullreturn root;}deque.offer(root);  // 将根节点加入队列,作为第一层while (!deque.isEmpty()) {  // 当队列不为空时,继续处理每一层int len = deque.size();  // 获取当前层的节点数量while (len > 0) {  // 遍历当前层的所有节点Node node = new Node();  // 创建一个新节点(占位)node = deque.poll();  // 从队列头部移除并获取当前节点len--;  // 当前层节点计数减 1if (node.left != null) deque.offer(node.left);   // 如果有左子节点,加入队列if (node.right != null) deque.offer(node.right); // 如果有右子节点,加入队列if (len != 0) node.next = deque.peek();  // 如果不是当前层最后一个节点,设置 next 指向队列头部节点}}return root;  // 返回填充了 next 指针的根节点}
}

117.填充每一个节点的下一个右侧节点指针2

给定一个二叉树:

struct Node {int val;Node *left;Node *right;Node *next;
}

填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL 。

初始状态下,所有 next 指针都被设置为 NULL 。

示例 1:

输入:root = [1,2,3,4,5,null,7]
输出:[1,#,2,3,#,4,5,7,#]
解释:给定二叉树如图 A 所示,你的函数应该填充它的每个 next 指针,以指向其下一个右侧节点,如图 B 所示。序列化输出按层序遍历顺序(由 next 指针连接),'#' 表示每层的末尾。

示例 2:

输入:root = []
输出:[]

提示:

  • 树中的节点数在范围 [0, 6000] 内
  • -100 <= Node.val <= 100

进阶:

  • 你只能使用常量级额外空间。
  • 使用递归解题也符合要求,本题中递归程序的隐式栈空间不计入额外空间复杂度。

解题思路

利用队列的“先进先出”(FIFO)特性,按层遍历二叉树。在每一层中,将当前节点的 next 指针设置为队列中的下一个节点(即右侧节点),从而连接同一层的节点。

代码

class Solution {Deque<Node> deque = new ArrayDeque();  // 定义双端队列,用于存储待处理的节点public Node connect(Node root) {if (root == null) {  // 如果根节点为空,返回 nullreturn root;}deque.offer(root);  // 将根节点加入队列,作为第一层while (!deque.isEmpty()) {  // 当队列不为空时,继续处理每一层int len = deque.size();  // 获取当前层的节点数量while (len > 0) {  // 遍历当前层的所有节点Node node = new Node();  // 创建一个新节点(占位)node = deque.poll();  // 从队列头部移除并获取当前节点len--;  // 当前层节点计数减 1if (node.left != null) deque.offer(node.left);   // 如果有左子节点,加入队列if (node.right != null) deque.offer(node.right); // 如果有右子节点,加入队列if (len != 0) node.next = deque.peek();  // 如果不是当前层最后一个节点,设置 next 指向队列头部节点}}return root;  // 返回填充了 next 指针的根节点}
}

 515.在每个树行中找最大值

给定一棵二叉树的根节点 root ,请找出该二叉树中每一层的最大值。

示例1:

输入: root = [1,3,2,5,3,null,9]
输出: [1,3,9]

示例2:

输入: root = [1,2,3]
输出: [1,3]

提示:

  • 二叉树的节点个数的范围是 [0,104]
  • -231 <= Node.val <= 231 - 1

解题思路

利用队列的“先进先出”(FIFO)特性,按层遍历二叉树。在每一层中,遍历所有节点,比较它们的值,记录最大值,并在层结束时加入结果列表。

代码 

class Solution {List<Integer> ans = new ArrayList<>();  // 定义全局列表,存储每层的最大值Deque<TreeNode> queue = new ArrayDeque<>();  // 定义双端队列,用于存储待处理的节点public List<Integer> largestValues(TreeNode root) {if (root == null) {  // 如果根节点为空,返回空列表return ans;}queue.offer(root);  // 将根节点加入队列,作为第一层while (!queue.isEmpty()) {  // 当队列不为空时,继续处理每一层int len = queue.size();  // 获取当前层的节点数量TreeNode node = new TreeNode();  // 创建一个新节点(占位)List<Integer> list = new ArrayList<>();  // 创建列表(未使用)Integer max = Integer.MIN_VALUE;  // 初始化当前层最大值为最小整数while (len > 0) {  // 遍历当前层的所有节点node = queue.poll();  // 从队列头部移除并获取当前节点if (node.val > max) {  // 如果当前节点值大于 maxmax = node.val;  // 更新最大值}len--;  // 当前层节点计数减 1if (node.left != null) queue.offer(node.left);   // 如果有左子节点,加入队列if (node.right != null) queue.offer(node.right); // 如果有右子节点,加入队列}ans.add(max);  // 将当前层的最大值加入结果列表}return ans;  // 返回每层最大值的列表}
}

http://www.dtcms.com/wzjs/48471.html

相关文章:

  • 济南智能网站建设营销策划方案怎么做
  • 国务院网站官网建设部百色seo关键词优化公司
  • wordpress替换表情变小优化师和运营区别
  • 网站前台开发由什么做的网站功能开发
  • wordpress 模板制作软件优化整站
  • 市政府网站管理制度建设网络营销公司有哪些公司
  • 外贸b2c网站的建设和优化以及站外链接建设方案seo引擎优化培训
  • 做pc端网站精英网络营销的认知
  • 怎样把自己做的网站发到网上网络营销的原理
  • 有专门做背景音乐的网站吗怎么让网站快速收录
  • 网站优化宝如何自己建一个网站
  • 邓州网站推广环球网
  • 域名访问wordpress小图标不显示关键词优化系统
  • 青岛商城网站建设设计网络营销到底是干嘛的
  • 网站建设军成网络技术培训
  • 网站 改版 方案青岛网站建设与设计制作
  • 淮南市网站建设手机自动排名次的软件
  • 本地网站开发环境搭建怎么自己找外贸订单
  • 网站上做公司宣传海南网站推广
  • 公益事业做网站百度seo优化分析
  • wordpress仿论坛主题惠州百度seo排名
  • 郑州做网站易云巢如何去推广自己的产品
  • 网站开发之前前后端不分离百度app下载官方免费下载最新版
  • 咸宁网站建设网络公司成都百度推广代理公司
  • 西安专业做网站公司今日小说排行榜百度搜索榜
  • 做数学题目在哪个网站好太原seo推广
  • 2023年最新疫情最新消息抖音seo查询工具
  • 网络游戏企业不得向提供游戏服务seo的基本步骤
  • 赌网站怎么做百度关键字推广费用
  • 电商网站建设的意义搜索引擎的营销方法有哪些