当前位置: 首页 > wzjs >正文

有没有个人网站甘肃百度推广电话

有没有个人网站,甘肃百度推广电话,wordpress 手动采集,网页设计与网站建设第2章在线测试一、NumPy 简介 1.1 NumPy 特性 高性能科学计算库:专为处理多维数组设计,底层用 C 语言实现,运算速度远超 Python 原生列表。 矢量运算:支持批量数据操作,避免显式循环,代码更简洁高效。 广播机制&…

一、NumPy 简介

1.1 NumPy 特性

  • 高性能科学计算库:专为处理多维数组设计,底层用 C 语言实现,运算速度远超 Python 原生列表。
  • 矢量运算:支持批量数据操作,避免显式循环,代码更简洁高效。
  • 广播机制:自动处理不同形状数组间的运算。
  • 丰富函数库:包含线性代数、傅里叶变换、随机数等功能。

1.2 应用场景

  • 数据分析:处理大规模结构化数据。
  • 机器学习:作为 TensorFlow/PyTorch 等框架的底层支持。
  • 科学计算:物理模拟、统计学分析。
  • 图像处理:多维数组表示像素数据。

1.3 安装与导入

pip install numpyimport numpy as np

二、NumPy 基础 —— 数组对象

2.1 数组与列表对比

特性

NumPy 数组 (ndarray)

Python 列表 (list)

数据类型

元素类型必须一致

可包含任意类型元素

内存存储

连续内存空间,访问速度快

非连续存储,访问较慢

运算效率

支持向量化运算,速度快

需显式循环,速度慢

维度支持

支持 n 维数组

仅支持一维结构

2.2 创建数组的四种方式

方法

语法

示例

np.array()

从列表 / 元组创建

arr1 = np.array([10, 20, 30, 40])

np.arange()

生成等差数列

arr2 = np.arange(0, 10, 2)

np.random

生成随机数组

arr3 = np.random.random((2, 3))

特殊函数

zeros/ones/full/eye

arr_zeros = np.zeros((3, 3))

代码示例
通过np.array创建数组
import numpy as np
a = np.array([1, 2, 3, 4])
print(a)  # 输出结果: [1 2 3 4]
通过np.arange创建数组
import numpy as np
a = np.arange(0, 10, 2)  # 创建0-10,步数为2的数组
print(a)  # 输出结果: [0 2 4 6 8]
通过np.random.random创建数组
import numpy as np
a = np.random.random((2, 3))
print(a)  # 输出类似于: [[0.04631855 0.21257259 0.73199394]#          [0.59865848 0.15601864 0.15599452]]
通过特殊函数创建数组
import numpy as np
array_zeros = np.zeros((3, 3))  # 3行3列全零数组
array_ones = np.ones((4, 4))   # 4行4列全一数组
array_full = np.full((2, 3), 9)  # 值为9的2行3列数组
array_eye = np.eye(4)  # 生成一个在斜方形上元素为1,其他元素都为0的4行4列矩阵
print(array_zeros)  # 输出: [[0. 0. 0.]#               [0. 0. 0.]#               [0. 0. 0.]]
print(array_ones)  # 输出: [[1. 1. 1. 1.]#               [1. 1. 1. 1.]#               [1. 1. 1. 1.]#               [1. 1. 1. 1.]]
print(array_full)  # 输出: [[9 9 9]#                [9 9 9]]
print(array_eye)  # 输出: [[1. 0. 0. 0.]#               [0. 1. 0. 0.]#               [0. 0. 1. 0.]#               [0. 0. 0. 1.]]

三、数组数据类型

3.1 核心数据类型

类型

描述

标识符

示例

bool

布尔值

b

True/False

int8

1 字节整数

i1

-128~127

int32

4 字节整数

i4

-2147483648~2147483647

float16

半精度浮点数

f2

16 位,精度约 3 位小数

float64

双精度浮点数

f8

标准浮点数

object

Python 对象

O

存储类实例等

3.2 类型操作

查询数据类型

import numpy as npclass Person:  # 定义Person类def __init__(self, name, age):self.name = nameself.age = agezs = Person('张三', 18)  # 产生对象
ls = Person('李四', 20)
d = np.array([zs, ls])
print(d)  # 输出: [__main__.Person object at 0x00000176CB4F2208 __main__.Person object at 0x00000176CB4F2288]
print(d.dtype)  # 输出: dtype('O')

创建数组指定数据类型

import numpy as np
a = np.array([1, 2, 3, 4, 5], dtype='int32')  # 使用dtype指定创建数组的数据类型
print(a)  # 输出结果: [1 2 3 4 5]
print(a.dtype)  # 输出: int32

修改数据类型

import numpy as np
a = np.array([1, 2, 3, 4, 5])
f = a.astype('float16')  # 使用astype改变数组的数据类型
print(f.dtype)  # 输出结果: float16

四、多维数组操作

4.1 维度与形状

数组

维度 (ndim)

形状 (shape)

含义

[1,2,3]

1

(3,)

一维数组,3 个元素

[[1,2],[3,4]]

2

(2,2)

2 行 2 列二维数组

[[[1,2],[3,4]],[[5,6],[7,8]]]

3

(2,2,2)

3 维数组,2 个 2x2 矩阵

4.2 基本操作

数组维度查询

import numpy as np
a1 = np.array([1, 2, 3])
a2 = np.array([[1, 2, 3], [4, 5, 6]])
a3 = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
print(a1.ndim)  # 输出: 1
print(a2.ndim)  # 输出: 2
print(a3.ndim)  # 输出: 3

数组形状查询

import numpy as np
a1 = np.array([1, 2, 3])
a2 = np.array([[1, 2, 3], [4, 5, 6]])
a3 = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
print(a1.shape)  # 输出: (3,)
print(a2.shape)  # 输出: (2, 3)
print(a3.shape)  # 输出: (2, 2, 3)

修改数组形状

import numpy as np
a1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])
a2 = a1.reshape((2, 6))  # reshape是将数组转换成指定的形状,然后返回转换后的结果,原数组的形状不会发生改变
print(a2)  # 输出: [[ 1  2  3  4  5  6]#          [ 7  8  9 10 11 12]]
print(a1.shape)  # 输出: (4, 3)
a1.resize((4, 3))  # resize是将数组转换成指定的形状,会直接修改数组本身,并且不会返回任何值
print(a1)  # 输出: [[1 2 3]#          [4 5 6]#          [7 8 9]#          [10 11 12]]

通过特殊函数创建数组

import numpy as np
array_zeros = np.zeros((3, 3))  # 3行3列全零数组
array_ones = np.ones((4, 4))   # 4行4列全一数组
array_full = np.full((2, 3), 9)  # 值为9的2行3列数组
array_eye = np.eye(4)  # 生成一个在斜方形上元素为1,其他元素都为0的4行4列矩阵
print(array_zeros)  # 输出: [[0. 0. 0.]#               [0. 0. 0.]#               [0. 0. 0.]]
print(array_ones)  # 输出: [[1. 1. 1. 1.]#               [1. 1. 1. 1.]#               [1. 1. 1. 1.]#               [1. 1. 1. 1.]]
print(array_full)  # 输出: [[9 9 9]#                [9 9 9]]
print(array_eye)  # 输出: [[1. 0. 0. 0.]#               [0. 1. 0. 0.]#               [0. 0. 1. 0.]#               [0. 0. 0. 1.]]

4.3 素组索引

下标索引

import numpy as np
a = np.arange(6)  # 一维数组
print(a)  # 输出: [0 1 2 3 4 5]
print(a[2])  # 输出: 2
print(a[-2])  # 输出: 4(从后往前数第2个)a = np.arange(9).reshape(3, 3)  # 二维数组
print(a)  # 输出: [[0 1 2]#          [3 4 5]#          [6 7 8]]
print(a[0][1])  # 输出: 1
print(a[0, 1])  # 输出: 1

切片索引

import numpy as np
a = np.arange(6)  # 一维数组
print(a)  # 输出: [0 1 2 3 4 5]
print(a[1:5])  # 输出: [1 2 3 4]
print(a[1:5:2])  # 输出: [1 3]
print(a[::2])  # 输出: [0 2 4]
print(a[::-1])  # 输出: [5 4 3 2 1 0]a = np.arange(9).reshape(3, 3)  # 二维数组
print(a)  # 输出: [[0 1 2]#          [3 4 5]#          [6 7 8]]
print(a[1:3, 1:2])  # 输出: [[4]#               [7]]
print(a[1, :])  # 输出: [3 4 5]
print(a[1, ...])  # 输出: [3 4 5]
print(a[:, 1])  # 输出: [1 4 7]

花式索引

import numpy as np
a = np.arange(6)  # 一维数组
print(a)  # 输出: [0 1 2 3 4 5]
print(a[[1, 2, 5]])  # 输出: [1 2 5]
print(a[np.array([(0, 1, 3), (1, 4, 5)])])  # 输出: [[0 1 3]#                [1 4 5]]a = np.arange(9).reshape(3, 3)  # 二维数组
print(a)  # 输出: [[0 1 2]#          [3 4 5]#          [6 7 8]]
print(a[[1, 0]])  # 输出: [[3 4 5]#                [0 1 2]]
print(a[[0, 2], 1])  # 输出: [1 7]
print(a[np.ix_([0, 1], [0, 1])])  # 输出: [[0 1]#                [3 4]]

布尔索引

import numpy as np
a = np.arange(6)  # 一维数组
print(a)  # 输出: [0 1 2 3 4 5]
print(a > 3)  # 输出: [False False False False  True  True]
print(a[a > 3])  # 输出: [4 5]a = np.arange(9).reshape(3, 3)  # 二维数组
print(a)  # 输出: [[0 1 2]#          [3 4 5]#          [6 7 8]]
print(a > 3)  # 输出: [[False False False]#               [False  True  True]#               [ True  True  True]]
print(a[a > 3])  # 输出: [4 5 6 7 8]

http://www.dtcms.com/wzjs/473886.html

相关文章:

  • 蔡文胜做的个人网站外包推广公司
  • 公司网址注册一般需要多少钱江北seo
  • 哪里有免费的网站模板下载网络营销现状分析
  • asp网站开发pdf商铺营销推广方案
  • 宜兴宜兴建设局网站免费域名注册服务网站
  • 用vs与dw做网站天津seo标准
  • 上海新闻网首页seo推广服务
  • 长沙诚信做网站网页设计制作网站模板
  • 连城县建设局网站谷歌推广开户多少费用
  • 重庆网站制作企业培训机构在哪个平台找
  • 网站建设案例要多少钱贵阳网站建设
  • wordpress 成功案例关键词优化的策略
  • 怎么建立个人网站今日新闻摘抄十条
  • 能利用双股铜芯电话线做网站吗营销和运营的区别是什么
  • wordpress语言插件qx郑州seo哪家专业
  • 2网站建设谷歌seo靠谱吗
  • 网站信息可以边建设边组织搭建网站的软件
  • 做网站要准备什么资料重庆seo顾问服务
  • 手机建个人网站网站定制设计
  • 搭建一个网站的步骤阿里大数据平台
  • app推广专员好做吗苏州seo关键词优化方法
  • wordpress 极简 主题沈阳网站seo排名公司
  • 手机投资网站12月10日新闻
  • 漳州做网站制作链接的小程序
  • 个人主页页面厦门seo代理商
  • 惠州市网站设计公司郑州seo课程
  • 品牌建设的三大理论大连网站seo
  • 无锡市规划建设局网站免费直链平台
  • 网站通栏如何做特效免费行情软件网站大全
  • 前端网站开发总结社交媒体营销