当前位置: 首页 > wzjs >正文

api.wordpress.org百度搜索优化软件

api.wordpress.org,百度搜索优化软件,网站验收标准,宁夏建设网站的公司学习笔记(24): 机器学习之数据预处理Pandas和转换成张量格式[2] 学习机器学习,需要学习如何预处理原始数据,这里用到pandas,将原始数据转换为张量格式的数据。 学习笔记(23): 机器学习之数据预处理Pandas和转换成张量格式[1]-CSDN博客 下面…

学习笔记(24): 机器学习之数据预处理Pandas和转换成张量格式[2]

学习机器学习,需要学习如何预处理原始数据,这里用到pandas,将原始数据转换为张量格式的数据。

学习笔记(23): 机器学习之数据预处理Pandas和转换成张量格式[1]-CSDN博客

下面介绍下:处理缺失值(删除法)

为什么要这样做?

这种处理缺失值的策略很实用,当某列的缺失值比例过高时,保留该列可能会对后续分析造成负面影响。删除缺失值最多的列可以避免在缺失值填充时引入过多噪声,提高数据质量。

原始数据:
   NumRoos Alley   Price
0      NaN  Pave  127500
1      2.0   NaN  106000
2      4.0   NaN  178100
3      NaN   NaN  140000

1、处理缺失值(删除法)

      “NaN”项代表缺失值。 为了处理缺失的数据,典型的方法包括插值法和删除法, 其中插值法用一个替代值弥补缺失值,而删除法则直接忽略缺失值。 在这里,我们将考虑删除法。

1.1、代码

# 处理缺失值
inputs, outputs = data.iloc[:, 0:2], data.iloc[:, 2]
# 转换 NumRoos 列为数值类型(将 'NA' 转为 NaN)
inputs['NumRoos'] = pd.to_numeric(inputs['NumRoos'],errors='coerce')# 计算每列的缺失值数量
miss_counts = inputs.isna().sum()
print("\n各列缺失值数量:")
print(miss_counts)# 找出缺失值最多的列
if not miss_counts.empty:max_miss = miss_counts.max()  # 计算最大缺失值数量,结果为3(Alley列有3个缺失值print(max_miss)clos_drop = miss_counts[miss_counts ==max_miss].index.tolist() #筛选出缺失值数量等于最大值的列,miss_counts == max_miss 返回布尔 Seriesinputs = inputs.drop(columns=clos_drop)  #删除筛选出的列print(f"\n已删除缺失值最多的列: {clos_drop}")# 用均值填充 NumRoos 列的缺失值
inputs['NumRoos'] = inputs['NumRoos'].fillna(inputs['NumRoos'].mean())print("\n处理后的数据:")
print(inputs)

代码解析如下

1. 数据分割:提取输入特征和输出标签
inputs, outputs = data.iloc[:, 0:2], data.iloc[:, 2]

inputs:提取数据的前两列(索引 0 和 1)作为特征(NumRoos和Alley)。
outputs:提取第三列(索引 2)作为目标变量(Price)。
2. 将NumRoos列转换为数值类型
inputs['NumRoos'] = pd.to_numeric(inputs['NumRoos'], errors='coerce')

pd.to_numeric(..., errors='coerce'):将字符串类型的数值转换为数字,无法转换的(如NA)会被转为NaN(缺失值)。
3. 计算每列的缺失值数量
miss_counts = inputs.isna().sum()
print("\n各列缺失值数量:")
print(miss_counts)
inputs.isna():返回一个布尔型 DataFrame,标记每个位置是否为缺失值。
.sum():统计每列的True(缺失值)数量。

#筛选出缺失值数量等于最大值的列

clos_drop = miss_counts[miss_counts == max_miss].index.tolist()

这行代码主要做了三件事:筛选、提取索引、转换为列表。

1、筛选操作 missing_counts[...]

     miss_counts == max_miss 返回布尔 Series
     miss_counts[...] 筛选出值为True的行(即Alley)。

# 结果:
# NumRoos    False
# Alley       True
# dtype: bool

2、.index 获取列名

筛选结果是一个新的 Series,我们需要它的索引(也就是列名)

# 结果:
# Index(['Alley'], dtype='object')

3、.tolist() 转换为列表

.index.tolist() 将列名转为列表 ['Alley']。

为什么要转换为列表?

你可能会问:为什么不直接用索引对象,而非要转成列表呢?这主要是为了兼容drop()方法。drop()方法的columns参数可以接受列名列表或索引对象,但列表更灵活,方便后续处理。

关键细节总结
1、缺失值处理策略:
优先删除缺失比例最高的列(Alley列缺失率 75%)。
对剩余列(NumRoos)用均值填充。
2、数据类型转换:
pd.to_numeric(..., errors='coerce') 是处理含缺失值的数值列的常用方法。
3、边缘情况处理:
当有多个列缺失值数量相同时(如两列均有 3 个缺失值),会同时删除这些列。
if not miss_counts.empty 确保无缺失值时不会报错。

# 用均值填充 NumRoos 列的缺失值

inputs['NumRoos'] = inputs['NumRoos'].fillna(inputs['NumRoos'].mean())

inputs['NumRoos'].mean():计算NumRoos列的均值(结果为 3.0,因为有效数值为 2 和 4)。
.fillna(...):将NumRoos列的缺失值(NaN)填充为均值 3.0。

1.2、执行结果

2、转换为张量格式

现在inputsoutputs中的所有条目都是数值类型,它们可以转换为张量格式。

2.1、代码

import torch
print("\n转换成张量数据:")
x = torch.tensor(inputs.to_numpy(dtype=float))
print(x)
y = torch.tensor(outputs.to_numpy(dtype=float))
print(y)

2.2、执行结果

  • pandas软件包是Python中常用的数据分析工具中,pandas可以与张量兼容。

  • pandas处理缺失的数据时,我们可根据情况选择用插值法和删除法。

http://www.dtcms.com/wzjs/471292.html

相关文章:

  • 照片做视频ppt模板下载网站好百度热搜关键词排名优化
  • 服务器如何搭建网站上海网站seo
  • 网页怎么设计图片循环播放站长工具seo推广 站长工具查询
  • 延安网站开发杭州专业seo
  • 沈阳做网站在哪下载百度地图2022最新版
  • 注册公司流程和费用 知乎全域seo
  • 电子商务网站建设合同标准范文网络培训心得体会5篇
  • 用dw做静态网站的步骤百度推广多少钱一天
  • 合肥公司网站建设价格外包seo公司
  • 南山做网站教程抖音推广方式有哪些
  • 网络架构必须满足哪些特性seo优化技术
  • 华为免费企业网站建设b站网页入口
  • 导航网站怎么推广危机公关处理
  • 德国网站建设陕西网络营销优化公司
  • 高品质网站开发网络营销八大目标是什么
  • 网站tag标签口碑优化
  • asp网站开发教程查询网入口
  • 网站开发建设总结新榜数据平台
  • 网站广告条怎么做网店网络营销与推广策划书
  • 做网站建设找哪家好100个免费推广b站
  • 大鹏网络网站建设品牌定位
  • 外贸网站建设模板百度登陆
  • 诸暨做网站今天的重要新闻
  • 厂家批发网站平台广告关键词排名
  • 网络公司网络营销推广方案北京专业seo公司
  • 网站上传图片不成功搜狗seo
  • 网站底部分享怎么做百度怎么做广告
  • t天津建设工程信息网武汉百度推广seo
  • 成交型网站制作如何把自己的网站推广出去
  • 香港公司网站备案今日新闻联播