当前位置: 首页 > wzjs >正文

宁波住房和城乡建设培训网站扬州整站seo

宁波住房和城乡建设培训网站,扬州整站seo,云主机玩游戏怎么样,如果做好招聘网站建设从一篇老外的书籍看到的,感觉挺不错,记录下!!! 【商环定义】(最低要求) 设 R ≠ { 0 } R \neq \left\{ 0 \right\} R{0}为交换幺环,设子集 S ⊆ R S \subseteq R S⊆R满足乘法运…

从一篇老外的书籍看到的,感觉挺不错,记录下!!!

【商环定义】(最低要求)

R ≠ { 0 } R \neq \left\{ 0 \right\} R={0}为交换幺环,设子集 S ⊆ R S \subseteq R SR满足乘法运算封闭且含单位元 1 1 1。在 R × S R \times S R×S上定义如下的等价关系 ∼ \sim

( ∀ ⟨ r 1 , s 1 ⟩ , ⟨ r 2 , s 2 ⟩ ∈ R × S ) [ ⟨ r 1 , s 1 ⟩ ∼ ⟨ r 2 , s 2 ⟩ ⇔ ( ∃ s 3 ∈ S ) [ s 3 ( s 2 r 1 − r 2 s 1 ) = 0 ] ] \left( \forall\left\langle r_{1},s_{1} \right\rangle,\left\langle r_{2},s_{2} \right\rangle \in R \times S\ \right)\left\lbrack \left\langle r_{1},s_{1} \right\rangle\sim\left\langle r_{2},s_{2} \right\rangle \Leftrightarrow \left( \exists s_{3} \in S \right)\left\lbrack s_{3}\left( s_{2}r_{1} - r_{2}s_{1} \right) = 0 \right\rbrack \right\rbrack (r1,s1,r2,s2R×S )[r1,s1r2,s2(s3S)[s3(s2r1r2s1)=0]]

R S = R × S / ∼ R_{S} = R \times S/\sim RS=R×S/为集合 R × S R \times S R×S上的等价类。同时定义等价类 R S R_{S} RS上的加法和乘法为:

r 1 s 1 + r 2 s 2 = s 2 r 1 + r 2 s 1 s 1 s 2 r 1 s 1 × r 2 s 2 = r 1 r 2 s 1 s 2 \frac{r_{1}}{s_{1}} + \frac{r_{2}}{s_{2}} = \frac{s_{2}r_{1} + r_{2}s_{1}}{s_{1}s_{2}}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \frac{r_{1}}{s_{1}} \times \frac{r_{2}}{s_{2}} = \frac{r_{1}r_{2}}{s_{1}s_{2}} s1r1+s2r2=s1s2s2r1+r2s1                      s1r1×s2r2=s1s2r1r2

可以看出元素 0 1 \frac{0}{1} 10 R S R_{S} RS的零元,元素 1 1 \frac{1}{1} 11 R S R_{S} RS的单位元,并且 R S R_{S} RS为交换环。环 R S R_{S} RS被称为 R R R的以 S S S为分母的商环或者分数环。

【有效性验证】

1. 等价关系 ∼ \sim 具有自反性、传递性、对称性

自反性和对称性比较容易验证,下面证明传递性:

⟨ r 1 , s 1 ⟩ ∼ ⟨ r 2 , s 2 ⟩ 、 ⟨ r 2 , s 2 ⟩ ∼ ⟨ r 3 , s 3 ⟩ \left\langle r_{1},s_{1} \right\rangle\sim\left\langle r_{2},s_{2} \right\rangle 、\left\langle r_{2},s_{2} \right\rangle\sim\left\langle r_{3},s_{3} \right\rangle r1,s1r2,s2r2,s2r3,s3,根据定义有

s 12 ( s 2 r 1 − r 2 s 1 ) = 0 s_{12}\left( s_{2}r_{1} - r_{2}s_{1} \right) = 0 s12(s2r1r2s1)=0

s 23 ( s 3 r 2 − r 3 s 2 ) = 0 s_{23}\left( s_{3}r_{2} - r_{3}s_{2} \right) = 0 s23(s3r2r3s2)=0

那么

s 12 s 2 r 1 = s 12 r 2 s 1 s_{12}s_{2}r_{1} = s_{12}r_{2}s_{1} s12s2r1=s12r2s1

s 23 s 3 r 2 = s 23 r 3 s 2 s_{23}s_{3}r_{2} = s_{23}r_{3}s_{2} s23s3r2=s23r3s2

消去 r 2 r_{2} r2可得 s 12 s 2 s 23 s 3 r 1 = s 12 s 1 s 23 s 2 r 3 s_{12}s_{2}s_{23}s_{3}r_{1} = s_{12}s_{1}s_{23}s_{2}r_{3} s12s2s23s3r1=s12s1s23s2r3,即 s 12 s 23 s 2 ( s 3 r 1 − s 1 r 3 ) = 0 s_{12}s_{23}s_{2}\left( s_{3}r_{1} - s_{1}r_{3} \right) = 0 s12s23s2(s3r1s1r3)=0,那么 ⟨ r 1 , s 1 ⟩ ∼ ⟨ r 3 , s 3 ⟩ \left\langle r_{1},s_{1} \right\rangle\sim\left\langle r_{3},s_{3} \right\rangle r1,s1r3,s3,也就是满足传递性。

2. 加法是有效的

⟨ r 1 , s 1 ⟩ ∼ ⟨ r 3 , s 3 ⟩ 、 ⟨ r 2 , s 2 ⟩ ∼ ⟨ r 4 , s 4 ⟩ \left\langle r_{1},s_{1} \right\rangle\sim\left\langle r_{3},s_{3} \right\rangle 、\left\langle r_{2},s_{2} \right\rangle\sim\left\langle r_{4},s_{4} \right\rangle r1,s1r3,s3r2,s2r4,s4,接下来验证:

r 1 s 1 + r 2 s 2 = r 3 s 3 + r 4 s 4 \frac{r_{1}}{s_{1}} + \frac{r_{2}}{s_{2}} = \frac{r_{3}}{s_{3}} + \frac{r_{4}}{s_{4}} s1r1+s2r2=s3r3+s4r4

根据定义,需要验证

s 2 r 1 + r 2 s 1 s 1 s 2 = s 4 r 3 + r 4 s 3 s 3 s 4 \frac{s_{2}r_{1} + r_{2}s_{1}}{s_{1}s_{2}} = \frac{s_{4}r_{3} + r_{4}s_{3}}{s_{3}s_{4}} s1s2s2r1+r2s1=s3s4s4r3+r4s3

因为 ⟨ r 1 , s 1 ⟩ ∼ ⟨ r 3 , s 3 ⟩ 、 ⟨ r 2 , s 2 ⟩ ∼ ⟨ r 4 , s 4 ⟩ \left\langle r_{1},s_{1} \right\rangle\sim\left\langle r_{3},s_{3} \right\rangle 、\left\langle r_{2},s_{2} \right\rangle\sim\left\langle r_{4},s_{4} \right\rangle r1,s1r3,s3r2,s2r4,s4,所以

s 13 ( s 3 r 1 − r 3 s 1 ) = 0 s_{13}\left( s_{3}r_{1} - r_{3}s_{1} \right) = 0 s13(s3r1r3s1)=0

s 24 ( s 4 r 2 − r 4 s 2 ) = 0 s_{24}\left( s_{4}r_{2} - r_{4}s_{2} \right) = 0 s24(s4r2r4s2)=0

从而

s 13 s 24 ( ( s 2 r 1 + r 2 s 1 ) ( s 3 s 4 ) − ( s 4 r 3 + r 4 s 3 ) ( s 1 s 2 ) ) s_{13}s_{24}\left( \left( s_{2}r_{1} + r_{2}s_{1} \right)\left( s_{3}s_{4} \right) - \left( s_{4}r_{3} + r_{4}s_{3} \right)\left( s_{1}s_{2} \right) \right) s13s24((s2r1+r2s1)(s3s4)(s4r3+r4s3)(s1s2))

= s 13 s 24 s 4 s 2 ( s 3 r 1 − r 3 s 1 ) + s 13 s 24 s 1 s 3 ( s 4 r 2 − r 4 s 2 ) = 0 = s_{13}s_{24}s_{4}s_{2}\left( s_{3}r_{1} - r_{3}s_{1} \right) + s_{13}s_{24}s_{1}s_{3}\left( s_{4}r_{2} - r_{4}s_{2} \right) = 0 =s13s24s4s2(s3r1r3s1)+s13s24s1s3(s4r2r4s2)=0

s 2 r 1 + r 2 s 1 s 1 s 2 = s 4 r 3 + r 4 s 3 s 3 s 4 \frac{s_{2}r_{1} + r_{2}s_{1}}{s_{1}s_{2}} = \frac{s_{4}r_{3} + r_{4}s_{3}}{s_{3}s_{4}} s1s2s2r1+r2s1=s3s4s4r3+r4s3

r 1 s 1 + r 2 s 2 = r 3 s 3 + r 4 s 4 \frac{r_{1}}{s_{1}} + \frac{r_{2}}{s_{2}} = \frac{r_{3}}{s_{3}} + \frac{r_{4}}{s_{4}} s1r1+s2r2=s3r3+s4r4

3. 乘法是有效的

⟨ r 1 , s 1 ⟩ ∼ ⟨ r 3 , s 3 ⟩ 、 ⟨ r 2 , s 2 ⟩ ∼ ⟨ r 4 , s 4 ⟩ \left\langle r_{1},s_{1} \right\rangle\sim\left\langle r_{3},s_{3} \right\rangle 、\left\langle r_{2},s_{2} \right\rangle\sim\left\langle r_{4},s_{4} \right\rangle r1,s1r3,s3r2,s2r4,s4,接下来验证:

r 1 s 1 × r 2 s 2 = r 3 s 3 × r 4 s 4 \frac{r_{1}}{s_{1}} \times \frac{r_{2}}{s_{2}} = \frac{r_{3}}{s_{3}} \times \frac{r_{4}}{s_{4}} s1r1×s2r2=s3r3×s4r4

根据定义,需要验证

r 1 r 2 s 1 s 2 = r 3 r 4 s 3 s 4 \frac{r_{1}r_{2}}{s_{1}s_{2}} = \frac{r_{3}r_{4}}{s_{3}s_{4}} s1s2r1r2=s3s4r3r4

因为 ⟨ r 1 , s 1 ⟩ ∼ ⟨ r 3 , s 3 ⟩ 、 ⟨ r 2 , s 2 ⟩ ∼ ⟨ r 4 , s 4 ⟩ \left\langle r_{1},s_{1} \right\rangle\sim\left\langle r_{3},s_{3} \right\rangle 、\left\langle r_{2},s_{2} \right\rangle\sim\left\langle r_{4},s_{4} \right\rangle r1,s1r3,s3r2,s2r4,s4,所以

s 13 ( s 3 r 1 − r 3 s 1 ) = 0 s_{13}\left( s_{3}r_{1} - r_{3}s_{1} \right) = 0 s13(s3r1r3s1)=0

s 24 ( s 4 r 2 − r 4 s 2 ) = 0 s_{24}\left( s_{4}r_{2} - r_{4}s_{2} \right) = 0 s24(s4r2r4s2)=0

s 13 s 3 r 1 = s 13 r 3 s 1 s_{13}s_{3}r_{1} = s_{13}r_{3}s_{1} s13s3r1=s13r3s1

s 24 s 4 r 2 = s 24 r 4 s 2 s_{24}s_{4}r_{2} = s_{24}r_{4}s_{2} s24s4r2=s24r4s2

从而

s 13 s 24 ( s 3 s 4 r 1 r 2 − s 1 s 2 r 3 r 4 ) = s 24 s 13 r 3 s 1 s 4 r 2 − s 13 s 24 r 3 s 1 s 4 r 2 = 0 s_{13}s_{24}\left( s_{3}s_{4}r_{1}r_{2} - s_{1}s_{2}r_{3}r_{4} \right) = s_{24}s_{13}r_{3}s_{1}s_{4}r_{2} - s_{13}s_{24}r_{3}s_{1}s_{4}r_{2} = 0 s13s24(s3s4r1r2s1s2r3r4)=s24s13r3s1s4r2s13s24r3s1s4r2=0

r 1 r 2 s 1 s 2 = r 3 r 4 s 3 s 4 \frac{r_{1}r_{2}}{s_{1}s_{2}} = \frac{r_{3}r_{4}}{s_{3}s_{4}} s1s2r1r2=s3s4r3r4

r 1 s 1 × r 2 s 2 = r 3 s 3 × r 4 s 4 \frac{r_{1}}{s_{1}} \times \frac{r_{2}}{s_{2}} = \frac{r_{3}}{s_{3}} \times \frac{r_{4}}{s_{4}} s1r1×s2r2=s3r3×s4r4

4. 加法乘法都满足交换律结合律,还满足分配律

通过字母运算容易验证,不再赘述。

【备注】

S S S选择元素时排除了所有 R R R的乘法零因子后,等价关系可以化简为

( ∀ ⟨ r 1 , s 1 ⟩ , ⟨ r 2 , s 2 ⟩ ∈ R × S ) [ ⟨ r 1 , s 1 ⟩ ∼ ⟨ r 2 , s 2 ⟩ ⇔ s 2 r 1 − r 2 s 1 = 0 ] \left( \forall\left\langle r_{1},s_{1} \right\rangle,\left\langle r_{2},s_{2} \right\rangle \in R \times S\ \right)\left\lbrack \left\langle r_{1},s_{1} \right\rangle\sim\left\langle r_{2},s_{2} \right\rangle \Leftrightarrow s_{2}r_{1} - r_{2}s_{1} = 0 \right\rbrack (r1,s1,r2,s2R×S )[r1,s1r2,s2s2r1r2s1=0]

http://www.dtcms.com/wzjs/470853.html

相关文章:

  • 网站建设时间表301313龙虎榜
  • 梁山网站建设哪家好营销型网站建设哪家好
  • 临平做网站企业网站优化价格
  • 北京企业建设网站成都网站设计公司
  • 自己电脑做服务器搭建网站如何创建个人网页
  • 酷家乐网站做墙裙教程百度广告销售
  • 快速搭建小程序汕头seo收费
  • 肇庆网站制作系统谷歌网站网址
  • 福田网站制作各大搜索引擎入口
  • wordpress 首页logoseo搜索引擎优化试题及答案
  • 上国外网站的host推广app大全
  • 做网站做丝袜美女的能行吗武汉百度推广外包
  • 手机网站建设域名空间做互联网项目怎么推广
  • 网站建设工作会议.企业网站推广有哪些
  • 网站没有备案信息该怎么做小说网站排名免费
  • 做网站工作怀孕2023年8月新冠疫情
  • 网站建设技术杭州谷歌推广
  • 最好的网站统计网络安全
  • 站长网站建设磁力搜索
  • 做的网站上更改内容改怎么百度热度榜搜索趋势
  • 有专门学做衣服网站海外seo推广公司
  • 网站建设补贴乐天seo视频教程
  • 酷炫html5网站海外短视频跨境电商平台是真的吗
  • 陶瓷网站开发背景推广关键词怎么设置
  • 深圳三级分销网站设计制作成都外贸seo
  • 长沙网站建设模板建站模板平台
  • 织梦保险网站源码昆明网络营销
  • 仿163ym源码交易平台网站源码seo平台是什么
  • 门户网站开发平台百度网盘官方下载
  • 成都网站制作售后成人再就业培训班