当前位置: 首页 > wzjs >正文

logo设计及创意说明成都网站优化排名推广

logo设计及创意说明,成都网站优化排名推广,wordpress下载链接 插件,官网建站系统目录 1.1 卷积神经网络基础 3.1 AlexNet网络结构详解与花分类数据集下载 4.1 VGG网络详解及感受野的计算 5.1 GoogLeNet网络详解 6.1 ResNet网络结构,BN以及迁移学习详解 总结(可以直接看总结) 1.1 卷积神经网络基础 视频讲解&#xf…

目录

1.1 卷积神经网络基础

3.1 AlexNet网络结构详解与花分类数据集下载

4.1 VGG网络详解及感受野的计算

5.1 GoogLeNet网络详解

6.1 ResNet网络结构,BN以及迁移学习详解

总结(可以直接看总结)


1.1 卷积神经网络基础

视频讲解:
1.1 卷积神经网络基础_哔哩哔哩_bilibili

发展不是一帆风顺的

全连接层:

卷积层()

目的:进行图像特征提取

特性:拥有局部感知机制,权值共享

扩展到多维

 特征总结:

  1. 卷积核的channel与输入特征层的channek相同
  2. 输出的特征矩阵channel与卷积核个数相同

sigmoid/Relu  两个激活函数  各有缺点:

Sigmoid:饱和时梯度值小,网络层数较深时易出现梯度消失
Relu:反向传播时出现非常大的梯度更新后导致权重分布中心小于零,导致该处导数始终为零,反向传播无法更新权重,即进入失活状态。

出现越界情况用padding处理(增补)

池化层()

和卷积层类似 但是要更简单

目的:对特征图像进行稀疏处理,减少数据运算量

(补充)反向传播(后面跳过了)

说明:本节理论较多,会枯燥,尽管内容不需要完全掌握,但是要大致理解,留有印象

误差的计算:

softmax:让结果满足概率分布(即概率和为1)  (猫/狗)

sigmoid:(人类/男人)

误差的反向传播:

3.1 AlexNet网络结构详解与花分类数据集下载

视频讲解:
3.1 AlexNet网络结构详解与花分类数据集下载_哔哩哔哩_bilibili

AlexNet(2012冠军)

该网络的亮点在于:

  • (1)首次利用 GPU进行网络加速训练。
  • (2)使用了 ReLu 激活函数,而不是传统的 sigmoid 激活函数以及 Tanh 激活函数。
  • (3)使用了 LRN 局部响应归一化。
  • (4)在全连接层的前两层中使用了 Dropout随机失活神经元操作,以减少过拟合。

中间的图像很好的诠释了AlexNet的好处,减少了过拟合的现象

解决方法:使用Dropout的方式在网络正传播过程中随机失活一部分神经元

经卷积后的矩阵尺寸大小计算公式为:N=(W-F+2P)/S+1
输入图片大小 W*W
Filter大小F*F
步长 S
padding的像素数P

4.1 VGG网络详解及感受野的计算

视频讲解:
4.1 VGG网络详解及感受野的计算_哔哩哔哩_bilibili

网络结构:

网络亮点: 

  • 通过堆叠多个3*3的卷积核来替代大尺度卷积核(减少所需参数 )
  • 通过堆善两个3x3的卷积核替代5x5的卷积核
  • 通过堆叠三个3x3的卷积核替代7x7的卷积核。

为什么这么干?
效果相同的情况下,参数更少。

5.1 GoogLeNet网络详解

网络结构:

网络中的亮点:

  • 引入了Inception结构(融合不同尺度的特征信息)
  • 使用1x1的卷积核进行降维以及映射处理    减少参数/特征矩阵深度
  • 添加两个辅助分类器帮助训练
  • 丢弃全连接层,使用平均池化层(大大减少模型参数)

注意:AlexNet和VGG都只有一个输出层,GooLeNet有三个输出层

6.1 ResNet网络结构,BN以及迁移学习详解

视频讲解:
6.1 ResNet网络结构,BN以及迁移学习详解_哔哩哔哩_bilibili

网络结构:

网络中的亮点:

  • 超深的网络结构(突破1000层)
  • 提出residual模块  
  • 使用Batch Normalization加速训练(丟奔dropout)

随着网络加深,梯度消失&&梯度爆炸现象越来越明显     BN等方式解决

Batch Normalization原理:
要让整个训练样本的数据集满足分布规律(均值为0方差为1)
退化问题,通过残差解决

迁移学习:
常见的迁移学习方式:

  • 1.载入权重后训练所有参数
  • 2.载入权重后只训练最后几层参数
  • 3.载入权重后在原网络基础上再添加一层全连接层,仅训练最后一个全连接层

总结(可以直接看总结):

综上呢,其实就是延续上一篇文章(上)基于机器学习的图像识别——遥感图像分类(LeNet-5;AlexNet;VGGNet;GoogLeNet;ResNet)-CSDN博客

五种”神经网络模型“的进一步讲解,偏向于理论层面

但两篇文章整理的是不同博主的讲解视频,讲的都蛮好的,通过”对比学习“可以发现,二者间会有一部分共通之处——这些共同之处一定是基础/重点,当然我已经帮大家整理好了,请各位放心食用。

http://www.dtcms.com/wzjs/469435.html

相关文章:

  • 视频wordpress源码搜索引擎优化要考虑哪些方面
  • 如何制作h5做网站seo关键词排名优化怎么收费
  • 企业管理咨询服务公司seo站内优化公司
  • 建网站来做什么seo基本步骤
  • 南宁建站热搜360推广开户
  • 济南最新招聘信息今天嘉兴seo外包服务商
  • 网站设计简单讲解发布软文广告
  • 重庆网站建设哪里比较好呢安徽seo团队
  • 文本中设置网站超链接怎么做自动搜索关键词软件
  • 个人业务网站建设百度网站提交入口
  • 建筑工具网站网站设计优化
  • 免费做网站刮刮卡网站建设制作费用
  • 中信建设有限责任公司投资部执行总监青岛百度seo代理
  • 枣阳网站建设等服务seoul什么意思
  • 台州网站seo外包站长工具站长之家官网
  • 网站建设公司 成本结转百度导航下载2021最新版
  • 滨湖网站制作杭州网站优化方案
  • 全屋定制十大名牌排行最新百度自然排名优化
  • 杭州网站制作报价国内b站不收费网站有哪些
  • 台州网站外包互联网推广引流公司
  • 做pvc卡片的交流网站搜索引擎营销的基本流程
  • 平台网站开发价格seo顾问能赚钱吗
  • 为什么做网站都用phpgoogleseo优化
  • 免费海外云服务器志鸿优化设计电子版
  • 做的ASP网站手机推广拉新任务的平台
  • 网站如何生成app四川百度推广排名查询
  • 模板网站robots怎么做百度手机网页
  • 嘉兴做外贸网站比较好的公司文大侠seo博客
  • 深圳外文网站制作洛阳网站seo
  • 教务网络管理系统seo前景