当前位置: 首页 > wzjs >正文

梁朝伟做汤唯视频网站怎么在百度上投放广告

梁朝伟做汤唯视频网站,怎么在百度上投放广告,网站制作时间,wordpress 分享文章标题注意力机制 心理学 动物需要在复杂的环境下有效关注值得注意的点 心理学框架:人类根据随意线索和不随意线索选择注意点 红色杯子:不随意线索(红色的杯子比较的显著,不需要额外的想法,自然而然会去看这个&#xff09…

注意力机制

心理学

动物需要在复杂的环境下有效关注值得注意的点
心理学框架:人类根据随意线索和不随意线索选择注意点
在这里插入图片描述
红色杯子:不随意线索(红色的杯子比较的显著,不需要额外的想法,自然而然会去看这个)
想读书:随意线索
想读书:随意线索

注意力机制

卷积、全连接、池化层都只考虑不随意线索
注意力机制则显示的考虑随意线索

  • 随意线索被称之为查询(query)
  • 每个输入是一个值(value)和不随意线索(key)的对
  • 通过注意力池化层来有偏向性的选择某些输入

在这里插入图片描述

非参注意力池化层

  • 给定数据 ( x i , y i ) , i = 1 , . . . , n (x_i, y_i), i = 1,...,n (xi,yi),i=1,...,n
  • 平均池化是最简单的方案: f ( x ) = 1 n ∑ i y i f(x) = \frac{1}{n} \sum_{i} y_i f(x)=n1iyi
  • 更好的方案是 60 年代提出来的 Nadaraya-Watson 核回归

f ( x ) = ∑ i = 1 n K ( x − x i ) ∑ j = 1 n K ( x − x j ) y i f(x) = \sum_{i=1}^{n} \frac{K(x - x_i)}{\sum_{j=1}^{n} K(x - x_j)} y_i f(x)=i=1nj=1nK(xxj)K(xxi)yi
在这里插入图片描述

Nadaraya-Watson核回归

  • 使用高斯核 K ( u ) = 1 2 π exp ⁡ ( − u 2 2 ) K(u) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{u^2}{2}) K(u)=2π 1exp(2u2)
  • 那么 f ( x ) = ∑ i = 1 n exp ⁡ ( − 1 2 ( x − x i ) 2 ) ∑ j = 1 n exp ⁡ ( − 1 2 ( x − x j ) 2 ) y i f(x) = \sum_{i=1}^{n} \frac{\exp \left( -\frac{1}{2}(x - x_i)^2 \right)}{\sum_{j=1}^{n} \exp \left( -\frac{1}{2}(x - x_j)^2 \right)} y_i f(x)=i=1nj=1nexp(21(xxj)2)exp(21(xxi)2)yi
    = ∑ i = 1 n softmax ( − 1 2 ( x − x i ) 2 ) y i = \sum_{i=1}^{n} \text{softmax} \left( -\frac{1}{2}(x - x_i)^2 \right) y_i =i=1nsoftmax(21(xxi)2)yi

参数化的注意力机制

在之前基础上引入可以学习的 w w w
f ( x ) = ∑ i = 1 n softmax ( − 1 2 ( ( x − x i ) w ) 2 ) y i f(x) = \sum_{i=1}^{n} \text{softmax} \left( -\frac{1}{2}((x - x_i)w)^2 \right) y_i f(x)=i=1nsoftmax(21((xxi)w)2)yi

总结

  • 心理学认为人通过随意线索和不随意线索选择注意点
  • 注意力机制中,通过query(随意线索)和key(不随意线索)来有偏向性的选择输入
    • 可以一般的写作 f ( x ) = ∑ i α ( x , x i ) y i f(x) = \sum_{i} \alpha(x, x_i) y_i f(x)=iα(x,xi)yi,这里 α ( x , x i ) \alpha(x, x_i) α(x,xi) 是注意力权重
    • 早在60年代就有非参数的注意力机制
    • 下面介绍多个不同的权重设计

代码实现

注意力汇聚:Nadaraya - Watson 核回归

import torch
from torch import nn
from d2l import torch as d2l

生成数据集

n_train = 50  # 训练样本数
x_train, _ = torch.sort(torch.rand(n_train) * 5)   # 排序后的训练样本def f(x):return 2 * torch.sin(x) + x**0.8y_train = f(x_train) + torch.normal(0.0, 0.5, (n_train,))  # 训练样本的输出
x_test = torch.arange(0, 5, 0.1)  # 测试样本
y_truth = f(x_test)  # 测试样本的真实输出
n_test = len(x_test)  # 测试样本数
n_test

可视化看一下

def plot_kernel_reg(y_hat):d2l.plot(x_test, [y_truth, y_hat], 'x', 'y', legend=['Truth', 'Pred'],xlim=[0, 5], ylim=[-1, 5])d2l.plt.plot(x_train, y_train, 'o', alpha=0.5);y_hat = torch.repeat_interleave(y_train.mean(), n_test)
plot_kernel_reg(y_hat)

在这里插入图片描述
非参数注意力汇聚

# X_repeat的形状:(n_test,n_train),
# 每一行都包含着相同的测试输入(例如:同样的查询)
X_repeat = x_test.repeat_interleave(n_train).reshape((-1, n_train))
# x_train包含着键。attention_weights的形状:(n_test,n_train),
# 每一行都包含着要在给定的每个查询的值(y_train)之间分配的注意力权重
attention_weights = nn.functional.softmax(-(X_repeat - x_train)**2 / 2, dim=1)
# y_hat的每个元素都是值的加权平均值,其中的权重是注意力权重
y_hat = torch.matmul(attention_weights, y_train)
plot_kernel_reg(y_hat)

在这里插入图片描述
注意力权重

d2l.show_heatmaps(attention_weights.unsqueeze(0).unsqueeze(0),xlabel='Sorted training inputs',ylabel='Sorted testing inputs')

在这里插入图片描述
带参数注意力汇聚 假定两个张量的形状分别是 ( n , a , b ) (n,a,b) (n,a,b) ( n , b , c ) (n,b,c) (n,b,c),它们的批量矩阵乘法输出的形状为 ( n , a , c ) (n,a,c) (n,a,c)

X = torch.ones((2, 1, 4))
Y = torch.ones((2, 4, 6))
torch.bmm(X, Y).shape# torch.Size([2, 1, 6])

带参数的注意力汇聚

class NWKernelRegression(nn.Module):def __init__(self, **kwargs):super().__init__(**kwargs)self.w = nn.Parameter(torch.rand((1,), requires_grad=True))def forward(self, queries, keys, values):# queries和attention_weights的形状为(查询个数,“键-值”对个数)queries = queries.repeat_interleave(keys.shape[1]).reshape((-1, keys.shape[1]))self.attention_weights = nn.functional.softmax(-((queries - keys) * self.w)**2 / 2, dim=1)# values的形状为(查询个数,“键-值”对个数)return torch.bmm(self.attention_weights.unsqueeze(1),values.unsqueeze(-1)).reshape(-1)

将训练数据集转换为键和值

# X_tile的形状:(n_train,n_train),每一行都包含着相同的训练输入
X_tile = x_train.repeat((n_train, 1))
# Y_tile的形状:(n_train,n_train),每一行都包含着相同的训练输出
Y_tile = y_train.repeat((n_train, 1))
# keys的形状:('n_train','n_train'-1)
keys = X_tile[(1 - torch.eye(n_train)).type(torch.bool)].reshape((n_train, -1))
# values的形状:('n_train','n_train'-1)
values = Y_tile[(1 - torch.eye(n_train)).type(torch.bool)].reshape((n_train, -1))

训练带参数的注意力汇聚模型

net = NWKernelRegression()
loss = nn.MSELoss(reduction='none')
trainer = torch.optim.SGD(net.parameters(), lr=0.5)
animator = d2l.Animator(xlabel='epoch', ylabel='loss', xlim=[1, 5])for epoch in range(5):trainer.zero_grad()l = loss(net(x_train, keys, values), y_train)l.sum().backward()trainer.step()print(f'epoch {epoch + 1}, loss {float(l.sum()):.6f}')animator.add(epoch + 1, float(l.sum()))

在这里插入图片描述
预测结果绘制

# keys的形状:(n_test,n_train),每一行包含着相同的训练输入(例如,相同的键)
keys = x_train.repeat((n_test, 1))
# value的形状:(n_test,n_train)
values = y_train.repeat((n_test, 1))
y_hat = net(x_test, keys, values).unsqueeze(1).detach()
plot_kernel_reg(y_hat)

在这里插入图片描述
曲线在注意力权重较大的区域变得更不平滑

d2l.show_heatmaps(net.attention_weights.unsqueeze(0).unsqueeze(0),xlabel='Sorted training inputs',ylabel='Sorted testing inputs')

在这里插入图片描述

小结

  • Nadaraya-Watson核回归是具有注意力机制的机器学习范例。
  • Nadaraya-Watson核回归的注意力汇聚是对训练数据中输出的加权平均。从注意力的角度来看,分配给每个值的注意力权重取决于将值所对应的键和查询作为输入的函数。
  • 注意力汇聚可以分为非参数型和带参数型。
http://www.dtcms.com/wzjs/465607.html

相关文章:

  • 知名营销网站汕头网站推广
  • 建网站需要域名百度快照客服
  • html网站结构解决方案经营管理培训课程
  • 效果好的网站建设公司seo网络营销外包
  • 专业零基础网站建设教学公司app营销推广方案
  • 太原网站建设服务网络公司推广方案
  • 摄影网站公司怎么优化网站排名才能起来
  • 国外购买域名网站在线建站网页制作网站建设平台
  • 平湖公司做网站seo工具软件
  • 网站建设合同纠纷如何做公司网站推广
  • web前端大型网站开发教程百度网址大全
  • 东山县建设银行网站网络营销方案3000字
  • 网站建设会议百度推广天天打骚扰电话
  • 陕西营销型手机网站建设百度营消 营销推广
  • 王爷毒妃不好惹短剧视频免费观看武汉seo首页
  • 高端大气的科技网站模板网络销售这个工作到底怎么样
  • 网站推广怎么做2017微信小程序开发费用一览表
  • 网站建设验收测试seo一个月工资一般多少
  • 美女色情做视频网站有哪些企业网站建设模板
  • 网站建设创新推广app下载
  • 网站开发现状云搜索系统
  • 做网站运营怎么样甲马营seo网站优化的
  • 做门户网站经验深圳外贸seo
  • 做拍卖网站多少钱淘客推广怎么做
  • 网站建设实训总结百度网盘app下载安装官方免费版
  • 企业型网站开发吸引人气的营销方案
  • 怎么将自己做的网站放到网上四种营销策略
  • 黑色装修网站源码dedeseo推广公司有哪些
  • 做网站在浏览器预览怎么出现了状况自己如何制作一个小程序
  • 网站开发字体选择湖南 seo