当前位置: 首页 > wzjs >正文

浙江建站优化品牌百度推广客服

浙江建站优化品牌,百度推广客服,linux网站开发软件,制作移动端网站价格文章目录 前言一、Encoder二、Decoder流程流程1 embedding流程2 注意力机制1.注意力机制:multi-self attention2.ADD NORM3.FNN:前向反馈神经网络层流程3 decoder第一个Mluti-head attention第二个Mluti-head attention交叉注意力机制softmax 预测输出单词Transformer 总结一个…

文章目录

  • 前言
  • 一、Encoder
  • 二、Decoder
  • 流程
      • 流程1 embedding
      • 流程2 注意力机制
          • 1.注意力机制:
          • multi-self attention
          • 2.ADD NORM
          • 3.FNN:前向反馈神经网络层
      • 流程3 decoder
        • 第一个Mluti-head attention
        • 第二个Mluti-head attention
          • 交叉注意力机制
        • softmax 预测输出单词
      • Transformer 总结
      • 一个生成翻译任务的训练和验证流程
        • 一:训练阶段:
          • teach forcing
        • 二:验证推理部分
        • 训练与验证的差异
      • teach force 与自回归生成的区别
        • 翻译实例
        • 常见问题回答


前言

transformer是大模型的基础,由encoder和decoder组成,
以翻译任务为例,输入一句话经过transformer生成其翻译内容。
实际应用中,都是由多个encoder和多个decoder构成编码器和解码器

一、Encoder

每个encoder实际上是由两个层构成,第一层是自注意力层,第二层是FFN前馈网络层。编码器的输入会先流经自注意力层,它可以让编码器在对特定词编码时使用输入句子中其他的信息。可以理解成翻译一个词的时候,不仅关注当前词而且还会关注其他词的信息。

二、Decoder

每个解码器有三层,除了self-attention层(mask的)和FNN外,还有Encoder-Decoder Attention层,该层用于帮助解码器关注输入句子的相关部分的。

流程

1.一般我们在处理NLP问题时,都要先把它变成在空间上可以计算的向量,即通过embedding词嵌入的形式。而词嵌入只发生在最底层的编码器中,即最下面的编码器接受的是词嵌入向量embedding,其他编码器接收的是下层编码器的输出。
2.每层encoder会将接收到的向量先经过self-attention再经过FNN后输出给下一个编码器。
在这里插入图片描述
输入的句子的embedding向量表示和每个词位置的向量表示相加得到可以输入进transformer模型中的矩阵X,输出编码信息矩阵C,C大小为(n*d),n是单词个数(5),d是embedding所转换为的维度(如768,512等等)即提取的特征,C后续会用到Decoder中。
3.注:decoder翻译时,依次会根据当前翻译过的单词1~i翻译下一个单词i+1,如下图所示。在使用过程中,翻译到单词i+1的时候需要通过Mask掩盖i+1后面的单词,第i+1个单词时不能用它后面的单词信息,只能用它本身及i+1之前的单词信息,因为后面的信息被mask了,由于decoder的mask-selfattention层会防止解码器在生成时“看到”未来信息,只能利用前面出现过的进行计算。
下图 Decoder 接收了 Encoder 的编码矩阵 C,然后首先输入一个翻译开始符 “”,预测第一个单词 “I”;然后输入翻译开始符 “” 和单词 “I”,预测单词 “have”,以此类推。这是 Transformer 使用时候的大致流程,接下来是里面各个部分的细节。
在这里插入图片描述

流程1 embedding

单词的embedding有经典的方法:word2vec,可以将词转换成空间维度中相同维度的向量。与bert的词embedding相同
Transformer 中使用位置 Embedding 保存单词在序列中的相对或绝对位置
通过训练或利用公式生成,与bert的位置编码方式不同
在这里插入图片描述

二者相加得到transformer的输入矩阵x

流程2 注意力机制

红色圈中的部分为 Multi-Head Attention,是由多个 Self-Attention组成的,可以看到 Encoder block 包含一个 Multi-Head Attention,而 Decoder block 包含两个 Multi-Head Attention (其中有一个用到 Masked)。Multi-Head Attention 上方还包括一个 Add & Norm 层,Add 表示残差连接 (Residual Connection) 用于防止网络退化,Norm 表示 Layer Normalization,用于对每一层的激活值进行归一化。
在这里插入图片描述

1.注意力机制:

在计算的时候需要用到矩阵Q(查询),K(键值),V(值)。在实际中,Self-Attention 接收的是输入(单词的表示向量x组成的矩阵X) 或者上一个 Encoder block 的输出。而Q,K,V正是通过 Self-Attention 的输入进行线性变换得到的。
Q、K、V 是通过输入与可学习的权重矩阵Wq,Wk,Wv计算得到的,模型会根据任务目标(如分类、生成等)调整这些权重,从而提取有用的特征。而权重矩阵(如 Q、K、V 的权重矩阵)的初始化是随机的,但它们的值并不是固定的,而是会在训练过程中通过梯度下降等优化算法不断更新,最终学习到适合任务的值。
Self-Attention 的输入用矩

http://www.dtcms.com/wzjs/464870.html

相关文章:

  • 彩票网站可以做哪些活动如何网站关键词优化
  • 做长图网站常见的网络营销推广方式有哪些
  • 临沂网站建设举措seo线上培训机构
  • 武汉营销类网站设计百度小说排行榜2020
  • 哪些网站织梦cms站长推荐入口自动跳转
  • 申请域名流程后怎样做网站论坛推广网站
  • 网站主页设计收费网络营销的优势与不足
  • wordpress表excel插件汕头seo排名公司
  • 免费做网站的方法百度关键词搜索次数
  • 用dw制作网站模板肇庆seo按天收费
  • 义乌做网站哪家好网络营销推广的特点
  • 长沙装修网站排名桂林网站设计
  • 佛山b2b网站建设360排名检测
  • 网站公安备案时间优化营商环境评价
  • 灰大设计导航西安seo优化系统
  • 网站被恶意刷流量网络营销推广流程
  • 任何查询网站有没有做404店铺推广平台有哪些
  • php 免费企业网站今日头条极速版官网
  • 建设网站价位全国疫情突然又严重了
  • 做视频网站需要多大带宽郑州企业网络推广外包
  • wordpress头像被墙windows优化大师有用吗
  • 个人博客系统源码武汉seo群
  • 做机加工的网站互联网去哪里学
  • 关于网站得精神文明建设自动引流推广软件
  • ims2009 asp企业网站建设北京搜索引擎优化经理
  • 用jsp做的简单网站代码广点通广告平台
  • 威县做网站哪里便宜武汉seo关键词排名
  • 广州网站建设q.479185700強百度竞价包年推广是怎么回事
  • 网站建设要不要监理正规网站建设服务
  • 招商引资平台有哪些关键词优化排名软件s