当前位置: 首页 > wzjs >正文

抖音小程序定制开发东莞优化网站关键词优化

抖音小程序定制开发,东莞优化网站关键词优化,怎么开平台,wordpress付费预约插件ReconDreamer 论文 在 DriveDreamer4D 的基础上,通过渐进式数据更新,解决大范围机动(多车道连续变道、紧急避障)的问题。同时 DriveDreamer4D生成轨迹后直接渲染,而 ReconDreamer 会实时通过 DriveRestorer 检测渲染结…

ReconDreamer 论文

在 DriveDreamer4D 的基础上,通过渐进式数据更新,解决大范围机动(多车道连续变道、紧急避障)的问题。同时 DriveDreamer4D生成轨迹后直接渲染,而 ReconDreamer 会实时通过 DriveRestorer 检测渲染结果与物理规则的冲突,并反向调整高斯参数。

在这里插入图片描述

总结来看,ReconDreamer 是 DriveDreamer4D 的增强版,核心创新在于将「静态世界模型调用」升级为「动态渐进式知识融合」,从而解决大机动场景的渲染难题。

DriveRestorer
先利用原始数据训练一遍重建模型,然后沿原始轨迹生成渲染视频 V o r i ^ = G ( τ o r i ) \hat{V_{ori}}=\mathcal{G}(\tau_{ori}) Vori^=G(τori)
由于重建模型的欠拟合,会产生重影伪影,从不同训练阶段采样渲染视频,构成数据集 { V ^ o r i k , V o r i } \{\hat{V}_{ori}^k,V_{ori}\} {V^orik,Vori} 其中 V ^ o r i k \hat{V}_{ori}^k V^orik 表示第 k 训练阶段采样的渲染视频。(模仿 DriveDreamer4D)对 V ^ o r i k \hat{V}_{ori}^k V^orik 施加 mask,重点修复远景和天空等易失真的区域,通过 ϵ ( V ^ m a s k ) = ϵ ( V ^ o r i ⨀ M ) \epsilon(\hat{V}_{mask})=\epsilon(\hat{V}_ori\bigodot M) ϵ(V^mask)=ϵ(V^oriM) 基于扩散模型的渐进式优化:
L R = E z , ϵ ∼ N ( 0 , 1 ) , t [ ∥ ϵ t − ϵ θ ( z t , t , c ) ∥ 2 2 ] \mathcal{L}_{\mathcal{R}}=\mathbb{E}_{\boldsymbol{z},\epsilon\sim\mathcal{N}(0,1),t}\left[\left\|\epsilon_t-\epsilon_\theta\left(\boldsymbol{z}_t,t,\boldsymbol{c}\right)\right\|_2^2\right] LR=Ez,ϵN(0,1),t[ϵtϵθ(zt,t,c)22]
控制条件 c 为 V ^ m a s k \hat{V}_{mask} V^mask,3D 边界框与高清地图。
推理时,冻住 DriveRestorer 参数用于新轨迹渲染修复:
V n o v e l = R ( V ^ n o v e l , P ( s , T n o v e l k ) ) , V_{\mathrm{novel}}=\mathcal{R}(\hat{V}_{\mathrm{novel}},\mathcal{P}(s,\mathcal{T}_{\mathrm{novel}}^k)), Vnovel=R(V^novel,P(s,Tnovelk)),
其中 s 为 3D 边界框和高清地图, P ( ⋅ ) \mathcal{P}(·) P() 表示将 s 对齐到 τ n o v e l k \tau_{novel}^k τnovelk 的投影变换。’
在这里插入图片描述

  • 轨迹扩展:第k次更新时,新轨迹 τ n o v e l \tau_{novel} τnovel 扩展 y = k Δ y y=k\Delta y y=kΔy 米( Δ y \Delta y Δy 为预设值,从 1.5m 开始,逐步生成 3m,6m)
  • 数据生成:通过重建模型 G \mathcal{G} G 渲染扩展轨迹视频 V ^ n o v e l \hat{V}_{novel} V^novel​,经 DriveRestorer 修复得 V n o v e l V_{novel} Vnovel
  • 加权更新:按采样概率 w = k ∑ j = 1 k j w=\frac{k}{\sum_{j=1}^kj} w=j=1kjk​ 更新数据集:高伪影区域:70%修复数据+30%原始数据;低伪影区域:30%修复数据+70%原始数据。通过 KL 散度监控,保证数据分布不发生漂移。 D n o v e l = ( 1 − w ) ⋅ D n o v e l ∪ w ⋅ V n o v e l D_{\mathrm{novel}}=(1-w)\cdot D_{\mathrm{novel}}\cup w\cdot V_{\mathrm{novel}} Dnovel=(1w)DnovelwVnovel
    原始数据: L o r i ( ϕ ) = λ 1 L o r i R G B + λ 2 L o r i D e p t h + λ 3 L o r i S S I M \mathcal{L}_{\mathrm{ori}}(\phi)=\lambda_{1}\mathcal{L}_{\mathrm{ori}}^{\mathrm{RGB}}+\lambda_{2}\mathcal{L}_{\mathrm{ori}}^{\mathrm{Depth}}+\lambda_{3}\mathcal{L}_{\mathrm{ori}}^{\mathrm{SSIM}} Lori(ϕ)=λ1LoriRGB+λ2LoriDepth+λ3LoriSSIM
    新数据: L n o v e l ( ϕ ) = λ 1 L n o v e l R G B + λ 3 L n o v e l S S I M \mathcal{L}_{\mathrm{novel}}(\phi)=\lambda_1\mathcal{L}_{\mathrm{novel}}^{\mathrm{RGB}}+\lambda_3\mathcal{L}_{\mathrm{novel}}^{\mathrm{SSIM}} Lnovel(ϕ)=λ1LnovelRGB+λ3LnovelSSIM
    联合训练: L ( ϕ ) = L o r i + L n o v e l . \mathcal{L}(\phi)=\mathcal{L}_{\mathrm{ori}}+\mathcal{L}_{\mathrm{novel}}. L(ϕ)=Lori+Lnovel.
http://www.dtcms.com/wzjs/454016.html

相关文章:

  • 厦门网站建设有限公司seo专业培训需要多久
  • 国外哪些网站可以兼职做任务惠州网络推广平台
  • 威海做网站的阿里云com域名注册
  • 长安区建设局官网站站电商广告网络推广
  • wordpress插件seo莆田seo
  • 推广引流文案南昌seo网站推广
  • 游戏界面设计网站百度快照是什么意思
  • 做网站吉林网络营销好不好
  • 深圳网站建设培训学校滨州网站建设
  • 六安火车站网站2021年度关键词有哪些
  • 手机网站的特点十大短视频平台排行榜
  • 平面设计免费素材网站销售系统
  • 做网站建设的合同范本搜索引擎推广方法
  • 上海网站建设免费推荐mac蜜桃923色号
  • 专门做折扣的网站有哪些网站关键词排名分析
  • 建筑行业网站模版电商产品推广方案
  • 个人网站建设方案天堂tv在线观看
  • 网站制作 软件开发2023年7月最新新闻摘抄
  • 福州网站推广公司百度云客服人工电话
  • 海门住房和城乡建设部网站公司网站建设步骤
  • php建设网站后台网络宣传推广
  • 企业网站运营问题东莞疫情最新消息通知
  • 营销型网站建设好不好品牌推广的具体方法
  • 深圳网站建设推荐网络推广文案怎么写
  • 腾讯云服务器租用价格表seo技术培训班
  • 苏州专业设计网站百度云资源搜索引擎入口
  • 外贸网站建设要求企业网络推广方案策划书
  • wordpress 百度不收录长沙seo推广外包
  • 网站推广工具网络免费产品推广软件
  • 曰本做爰l网站软文营销的技巧