当前位置: 首页 > wzjs >正文

西部数码空间可以做会所网站吗淘宝摄影培训推荐

西部数码空间可以做会所网站吗,淘宝摄影培训推荐,服务器和域名如何做网站,如何查一个网站的备案注意力机制 心理学 动物需要在复杂的环境下有效关注值得注意的点 心理学框架:人类根据随意线索和不随意线索选择注意点 红色杯子:不随意线索(红色的杯子比较的显著,不需要额外的想法,自然而然会去看这个&#xff09…

注意力机制

心理学

动物需要在复杂的环境下有效关注值得注意的点
心理学框架:人类根据随意线索和不随意线索选择注意点
在这里插入图片描述
红色杯子:不随意线索(红色的杯子比较的显著,不需要额外的想法,自然而然会去看这个)
想读书:随意线索
想读书:随意线索

注意力机制

卷积、全连接、池化层都只考虑不随意线索
注意力机制则显示的考虑随意线索

  • 随意线索被称之为查询(query)
  • 每个输入是一个值(value)和不随意线索(key)的对
  • 通过注意力池化层来有偏向性的选择某些输入

在这里插入图片描述

非参注意力池化层

  • 给定数据 ( x i , y i ) , i = 1 , . . . , n (x_i, y_i), i = 1,...,n (xi,yi),i=1,...,n
  • 平均池化是最简单的方案: f ( x ) = 1 n ∑ i y i f(x) = \frac{1}{n} \sum_{i} y_i f(x)=n1iyi
  • 更好的方案是 60 年代提出来的 Nadaraya-Watson 核回归

f ( x ) = ∑ i = 1 n K ( x − x i ) ∑ j = 1 n K ( x − x j ) y i f(x) = \sum_{i=1}^{n} \frac{K(x - x_i)}{\sum_{j=1}^{n} K(x - x_j)} y_i f(x)=i=1nj=1nK(xxj)K(xxi)yi
在这里插入图片描述

Nadaraya-Watson核回归

  • 使用高斯核 K ( u ) = 1 2 π exp ⁡ ( − u 2 2 ) K(u) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{u^2}{2}) K(u)=2π 1exp(2u2)
  • 那么 f ( x ) = ∑ i = 1 n exp ⁡ ( − 1 2 ( x − x i ) 2 ) ∑ j = 1 n exp ⁡ ( − 1 2 ( x − x j ) 2 ) y i f(x) = \sum_{i=1}^{n} \frac{\exp \left( -\frac{1}{2}(x - x_i)^2 \right)}{\sum_{j=1}^{n} \exp \left( -\frac{1}{2}(x - x_j)^2 \right)} y_i f(x)=i=1nj=1nexp(21(xxj)2)exp(21(xxi)2)yi
    = ∑ i = 1 n softmax ( − 1 2 ( x − x i ) 2 ) y i = \sum_{i=1}^{n} \text{softmax} \left( -\frac{1}{2}(x - x_i)^2 \right) y_i =i=1nsoftmax(21(xxi)2)yi

参数化的注意力机制

在之前基础上引入可以学习的 w w w
f ( x ) = ∑ i = 1 n softmax ( − 1 2 ( ( x − x i ) w ) 2 ) y i f(x) = \sum_{i=1}^{n} \text{softmax} \left( -\frac{1}{2}((x - x_i)w)^2 \right) y_i f(x)=i=1nsoftmax(21((xxi)w)2)yi

总结

  • 心理学认为人通过随意线索和不随意线索选择注意点
  • 注意力机制中,通过query(随意线索)和key(不随意线索)来有偏向性的选择输入
    • 可以一般的写作 f ( x ) = ∑ i α ( x , x i ) y i f(x) = \sum_{i} \alpha(x, x_i) y_i f(x)=iα(x,xi)yi,这里 α ( x , x i ) \alpha(x, x_i) α(x,xi) 是注意力权重
    • 早在60年代就有非参数的注意力机制
    • 下面介绍多个不同的权重设计

代码实现

注意力汇聚:Nadaraya - Watson 核回归

import torch
from torch import nn
from d2l import torch as d2l

生成数据集

n_train = 50  # 训练样本数
x_train, _ = torch.sort(torch.rand(n_train) * 5)   # 排序后的训练样本def f(x):return 2 * torch.sin(x) + x**0.8y_train = f(x_train) + torch.normal(0.0, 0.5, (n_train,))  # 训练样本的输出
x_test = torch.arange(0, 5, 0.1)  # 测试样本
y_truth = f(x_test)  # 测试样本的真实输出
n_test = len(x_test)  # 测试样本数
n_test

可视化看一下

def plot_kernel_reg(y_hat):d2l.plot(x_test, [y_truth, y_hat], 'x', 'y', legend=['Truth', 'Pred'],xlim=[0, 5], ylim=[-1, 5])d2l.plt.plot(x_train, y_train, 'o', alpha=0.5);y_hat = torch.repeat_interleave(y_train.mean(), n_test)
plot_kernel_reg(y_hat)

在这里插入图片描述
非参数注意力汇聚

# X_repeat的形状:(n_test,n_train),
# 每一行都包含着相同的测试输入(例如:同样的查询)
X_repeat = x_test.repeat_interleave(n_train).reshape((-1, n_train))
# x_train包含着键。attention_weights的形状:(n_test,n_train),
# 每一行都包含着要在给定的每个查询的值(y_train)之间分配的注意力权重
attention_weights = nn.functional.softmax(-(X_repeat - x_train)**2 / 2, dim=1)
# y_hat的每个元素都是值的加权平均值,其中的权重是注意力权重
y_hat = torch.matmul(attention_weights, y_train)
plot_kernel_reg(y_hat)

在这里插入图片描述
注意力权重

d2l.show_heatmaps(attention_weights.unsqueeze(0).unsqueeze(0),xlabel='Sorted training inputs',ylabel='Sorted testing inputs')

在这里插入图片描述
带参数注意力汇聚 假定两个张量的形状分别是 ( n , a , b ) (n,a,b) (n,a,b) ( n , b , c ) (n,b,c) (n,b,c),它们的批量矩阵乘法输出的形状为 ( n , a , c ) (n,a,c) (n,a,c)

X = torch.ones((2, 1, 4))
Y = torch.ones((2, 4, 6))
torch.bmm(X, Y).shape# torch.Size([2, 1, 6])

带参数的注意力汇聚

class NWKernelRegression(nn.Module):def __init__(self, **kwargs):super().__init__(**kwargs)self.w = nn.Parameter(torch.rand((1,), requires_grad=True))def forward(self, queries, keys, values):# queries和attention_weights的形状为(查询个数,“键-值”对个数)queries = queries.repeat_interleave(keys.shape[1]).reshape((-1, keys.shape[1]))self.attention_weights = nn.functional.softmax(-((queries - keys) * self.w)**2 / 2, dim=1)# values的形状为(查询个数,“键-值”对个数)return torch.bmm(self.attention_weights.unsqueeze(1),values.unsqueeze(-1)).reshape(-1)

将训练数据集转换为键和值

# X_tile的形状:(n_train,n_train),每一行都包含着相同的训练输入
X_tile = x_train.repeat((n_train, 1))
# Y_tile的形状:(n_train,n_train),每一行都包含着相同的训练输出
Y_tile = y_train.repeat((n_train, 1))
# keys的形状:('n_train','n_train'-1)
keys = X_tile[(1 - torch.eye(n_train)).type(torch.bool)].reshape((n_train, -1))
# values的形状:('n_train','n_train'-1)
values = Y_tile[(1 - torch.eye(n_train)).type(torch.bool)].reshape((n_train, -1))

训练带参数的注意力汇聚模型

net = NWKernelRegression()
loss = nn.MSELoss(reduction='none')
trainer = torch.optim.SGD(net.parameters(), lr=0.5)
animator = d2l.Animator(xlabel='epoch', ylabel='loss', xlim=[1, 5])for epoch in range(5):trainer.zero_grad()l = loss(net(x_train, keys, values), y_train)l.sum().backward()trainer.step()print(f'epoch {epoch + 1}, loss {float(l.sum()):.6f}')animator.add(epoch + 1, float(l.sum()))

在这里插入图片描述
预测结果绘制

# keys的形状:(n_test,n_train),每一行包含着相同的训练输入(例如,相同的键)
keys = x_train.repeat((n_test, 1))
# value的形状:(n_test,n_train)
values = y_train.repeat((n_test, 1))
y_hat = net(x_test, keys, values).unsqueeze(1).detach()
plot_kernel_reg(y_hat)

在这里插入图片描述
曲线在注意力权重较大的区域变得更不平滑

d2l.show_heatmaps(net.attention_weights.unsqueeze(0).unsqueeze(0),xlabel='Sorted training inputs',ylabel='Sorted testing inputs')

在这里插入图片描述

小结

  • Nadaraya-Watson核回归是具有注意力机制的机器学习范例。
  • Nadaraya-Watson核回归的注意力汇聚是对训练数据中输出的加权平均。从注意力的角度来看,分配给每个值的注意力权重取决于将值所对应的键和查询作为输入的函数。
  • 注意力汇聚可以分为非参数型和带参数型。
http://www.dtcms.com/wzjs/44443.html

相关文章:

  • 二手车网站制作b2b外链代发
  • 网站域名后缀的意思小红书推广方式有哪些
  • 网站淘客怎么做怎么设计网站
  • 深圳微网站建设公司佛山网络推广哪里好
  • 企业电子商务网站站长之家seo查询官方网站
  • 太原网站建设费用杭州做seo的公司
  • 手工做皮具国外的网站找推网
  • 网络宣传网站建设咨询怎么关闭seo综合查询
  • 长沙网站建设推广沧州网站建设优化公司
  • 重庆网站建设 公司恶意点击软件哪个好
  • php网站建设公司最新新闻热点素材
  • 寿光专业做网站的公司怎么推广自己的网站?
  • php怎么做网站程序品牌营销成功案例
  • 淘客选品网站开发市场调研分析报告
  • 域名注册好了怎么做网站重庆网络seo
  • 云空间的网站网站权重划分
  • 有什么兼职做it的网站好长沙seo袁飞
  • 开锁在百度上做网站要钱吗百度热搜榜排行
  • asp动态网站衣服销售外贸电商平台哪个网站最好
  • 滨海做网站哪家好平台推广销售话术
  • 做网站市场分析好看的网站设计
  • 辽宁省锦州市住房与城乡建设厅网站长沙网站优化效果
  • 网上开店货源的选择主要有武汉seo 网络推广
  • 怎么为网站做外链广告商对接平台
  • 照片做成视频的软件seo咨询河北
  • 外贸专业网站的公司营销网站建设创意
  • php做的网站预览国家高新技术企业
  • 制作网页时一般需要兼容下列选项中的哪些浏览器北京搜索引擎优化主管
  • wordpress curl 导致504谷歌网站推广优化
  • 网站建设估价全网营销