当前位置: 首页 > wzjs >正文

受欢迎的邢台做网站长沙网动网络科技有限公司

受欢迎的邢台做网站,长沙网动网络科技有限公司,哪些做调查问卷挣钱的网站,wordpress 编辑锚点机器学习(Machine Learning) 简要声明 基于吴恩达教授(Andrew Ng)课程视频 BiliBili课程资源 文章目录 机器学习(Machine Learning)简要声明 二、决策边界决策边界的数学表达线性决策边界示例非线性决策边界非线性决策边界的示例…

机器学习(Machine Learning)

简要声明

基于吴恩达教授(Andrew Ng)课程视频
BiliBili课程资源


文章目录

  • 机器学习(Machine Learning)
    • 简要声明
  • 二、决策边界
    • 决策边界的数学表达
    • 线性决策边界示例
    • 非线性决策边界
    • 非线性决策边界的示例


一、逻辑回归的基本原理

二、决策边界

在逻辑回归中,决策边界是模型用于划分不同类别样本的边界。对于二分类任务,决策边界通常是一个阈值,例如 0.5。当模型输出大于等于 0.5 时,我们预测样本属于正类(1);当模型输出小于 0.5 时,我们预测样本属于负类(0)。

决策边界的选择对于模型的性能至关重要。在实际应用中,我们可能需要根据具体问题调整决策边界,以平衡精度和召回率。

决策边界的数学表达

决策边界的数学表达式为:

f w → , b ( x → ) ≥ 0.5 f_{\overrightarrow{w}, b}(\overrightarrow{x}) \geq 0.5 fw ,b(x )0.5

根据 Sigmoid 函数的性质,当且仅当线性组合 z = w → ⋅ x → + b ≥ 0 z = \overrightarrow{w} \cdot \overrightarrow{x} + b \geq 0 z=w x +b0 时, g ( z ) ≥ 0.5 g(z) \geq 0.5 g(z)0.5。因此,决策边界可以表示为:

w → ⋅ x → + b = 0 \overrightarrow{w} \cdot \overrightarrow{x} + b = 0 w x +b=0
在这里插入图片描述

线性决策边界示例

假设我们有一个二维特征空间,其中 x 1 x_1 x1 x 2 x_2 x2 是两个特征。决策边界可以表示为:

w 1 x 1 + w 2 x 2 + b = 0 w_1 x_1 + w_2 x_2 + b = 0 w1x1+w2x2+b=0

例如,假设 w 1 = 1 w_1 = 1 w1=1, w 2 = 1 w_2 = 1 w2=1, b = − 3 b = -3 b=3,则决策边界为:

x 1 + x 2 − 3 = 0 x_1 + x_2 - 3 = 0 x1+x23=0

即:

x 1 + x 2 = 3 x_1 + x_2 = 3 x1+x2=3

这个决策边界将特征空间划分为两个区域:当 x 1 + x 2 ≥ 3 x_1 + x_2 \geq 3 x1+x23 时,预测 y ^ = 1 \hat{y} = 1 y^=1;否则预测 y ^ = 0 \hat{y} = 0 y^=0
在这里插入图片描述

非线性决策边界

逻辑回归模型也可以处理非线性决策边界。通过引入多项式特征,我们可以构造更复杂的决策边界。例如:

z = w 1 x 1 2 + w 2 x 2 2 + b z = w_1 x_1^2 + w_2 x_2^2 + b z=w1x12+w2x22+b

决策边界为:

w 1 x 1 2 + w 2 x 2 2 + b = 0 w_1 x_1^2 + w_2 x_2^2 + b = 0 w1x12+w2x22+b=0

例如,假设 w 1 = 1 w_1 = 1 w1=1, w 2 = 1 w_2 = 1 w2=1, b = − 1 b = -1 b=1,则决策边界为:

x 1 2 + x 2 2 − 1 = 0 x_1^2 + x_2^2 - 1 = 0 x12+x221=0

即:

x 1 2 + x 2 2 = 1 x_1^2 + x_2^2 = 1 x12+x22=1

这个决策边界是一个半径为 1 的圆,将特征空间划分为内部和外部两个区域:当 x 1 2 + x 2 2 ≥ 1 x_1^2 + x_2^2 \geq 1 x12+x221 时,预测 y ^ = 1 \hat{y} = 1 y^=1;否则预测 y ^ = 0 \hat{y} = 0 y^=0

非线性决策边界的示例

考虑一个更复杂的非线性决策边界:

z = w 1 x 1 2 + w 2 x 2 2 + w 3 x 1 3 + w 4 x 1 x 2 + w 5 x 2 3 + b z = w_1 x_1^2 + w_2 x_2^2 + w_3 x_1^3 + w_4 x_1 x_2 + w_5 x_2^3 + b z=w1x12+w2x22+w3x13+w4x1x2+w5x23+b

决策边界为:

w 1 x 1 2 + w 2 x 2 2 + w 3 x 1 3 + w 4 x 1 x 2 + w 5 x 2 3 + b = 0 w_1 x_1^2 + w_2 x_2^2 + w_3 x_1^3 + w_4 x_1 x_2 + w_5 x_2^3 + b = 0 w1x12+w2x22+w3x13+w4x1x2+w5x23+b=0

这个决策边界可以是椭圆、圆形或其他复杂的形状,具体取决于参数的选择。

决策边界是逻辑回归模型用于划分不同类别样本的边界。对于线性可分的数据,决策边界是一个线性方程;对于非线性可分的数据,可以通过引入多项式特征来构造非线性决策边界。

在实际应用中,合理选择决策边界对于提高模型的分类性能至关重要。通过调整模型参数,我们可以使决策边界更好地适应数据的分布。


continue…

http://www.dtcms.com/wzjs/440387.html

相关文章:

  • 建wiki网站长沙seo推广
  • 在模板网站建站好吗优化网站seo方案
  • 不到网站是为什么公司网站模板
  • 怎样做 云知梦 网站 付费网站上海seo公司排名榜
  • 做站长建不好网站正版搜索引擎优化
  • 特产网站建设方案企业网络推广方案
  • 河南有名的做网站公司有哪些宁波seo排名方案优化公司
  • 成都市直机关党建网站建设如何制作网页最简单的方法
  • 阜阳北京网站建设怎样让自己的网站排名靠前
  • 免费域名网站建设北京网站优化公司哪家好
  • 四川细胞库网站建设百度客户端登录
  • 视频网站会员系统怎么做全球网站排名前100
  • 专业展示设计网站今日十大头条新闻
  • 做视频类型的网站互联网广告投放
  • 如何自己做游戏软件北京中文seo
  • 中国建设银行网站开通短信服务百度指数数据
  • 大兴做网站百度推广400电话
  • 黑龙江建设局网站网络推广外包公司排名
  • 网站推广的特点百度搜索引擎
  • 律师行业协会网站建设深圳网络推广工资
  • 门户网站建设管理成都百度网站排名优化
  • 沧州自适应网站建设360优化大师历史版本
  • 做网站设计赚不赚钱网络推广策划方案
  • 网站建设的威胁seo免费入门教程
  • 用html网站登录界面怎么做抖音搜索优化
  • 浏览网站时弹出的广告是谁给做的青岛网站制作公司
  • 怎么用qq邮箱做网站全国免费发布广告信息平台
  • 青青河边草免费观看视频免费seo建站平台哪家好
  • 什么软件做网站描述移动建站模板
  • 上海大型网站开发公司友情网站