当前位置: 首页 > wzjs >正文

用python做网站开发的课程西安百度推广排名

用python做网站开发的课程,西安百度推广排名,深圳品牌营销咨询公司,做欧美贸易的主要有哪些网站本文是实验设计与分析(第6版,Montgomery著傅珏生译)第10章拟合回归模型第10.4节的python解决方案。本文尽量避免重复书中的理论,着于提供python解决方案,并与原书的运算结果进行对比。您可以从Detail 下载实验设计与分析&#xff…

本文是实验设计与分析(第6版,Montgomery著傅珏生译)第10章拟合回归模型第10.4节的python解决方案。本文尽量避免重复书中的理论,着于提供python解决方案,并与原书的运算结果进行对比。您可以从Detail 下载实验设计与分析(第6版,Montgomery著傅珏生译)电子版。本文假定您已具备python基础,如果您还没有python的基础,可以从Detail 下载相关资料进行学习。

在多元线性回归问题中,对模型参数的假设检验有助于度量模型的有效性,本节将介绍几种重要的假设检验方法。这些方法要求模型误差εi服从均值为零,方差为σ2的独立的正态分布,简记为ε~NID(0,σ2)。由此可知,观测yi服从均值为,方差为σ2的独立的正态分布。

10.4.1回归的显著性检验(略)

10.4.2 回归系数的个别检验和分组检验

大多数回归的计算机程序对每个模型参数给出t检验。例如,考虑表10.4,它是例10.1的Minitab输出。输出的上面部分给出了每个参数的最小二乘估计、标准误、t统计量以及对应的P值。对此模型,我门的结论是两个变量(温度和进料速率)都是显著的。

例10.6 考虑例10.1中的黏度数据。假定要研究变量x2(进料速率)对模型的作用。即所要检验的假设是

Ho:β2=0,H1: β2≠0

这需要求出β2的附加平方和

由检验了回归显著性的表10.4,我们有

在表中它被称为模型平方和。这个平方和有2个自由度

简化模型是

此模型的最小二乘拟合为

其(自由度为1的)回归平方和是

注意,这个SSR(β1|β0)显示在表10.4中Mintab输出的底部的“Seq SS项中。因此,

其自由度为2一1=1。这是向已包含了x1的模型中添加x2而引起的回归平方和的增加量,己显示在表10.4中Mintab输出的底部。为了检验H0: β2=0,由检验统计量可得

注意,F0的分母为全模型中的MSE(表10.4)。由F0.05,1,13=4.67,我们拒绝H0: β2=0,并认为x2(进料速率)对模型有显著影响。

这个偏F检验仅涉及单一回归变量,此时它等价于t检验,因为自由度为ν的t统计量的平方就是自由度为1和ν的F统计量。为了理解这一点,查看表10.4中对H0: β2=0检验的t统计量t0=3.5203,因此t02=(3.5203)2=12.3925F0

# P324例10.1

Viscosity=[2256,2340,2426,2293,2330,2368,2250,2409,2364,2379,2440,2364,2404,2317,2309,2328]

Temperature =[80,93,100,82,90,99,81,96,94,93,97,95,100,85,86,87]

Catalyst =[8,9,10,12,11,8,8,10,12,11,13,11,8,12,9,12]

data= {"Viscosity":Viscosity,"Temperature":Temperature,"Catalyst":Catalyst}

df =pd.DataFrame(data)

#model = smf.ols('df.Viscosity ~ C(df.Temperature) + C(df.Rate)', data=df).fit()

model = smf.ols('df.Viscosity ~df.Temperature +df.Catalyst', data=df).fit()

#model = smf.ols('df.Yield ~pd.get_dummies(df.Temperature) +pd.get_dummies(df.Pressure)+pd.get_dummies(df.Conc)', data=df).fit()

#model = smf.ols('df.Viscosity ~ df.Temperature + df.Rate + df.Temperature:df.Rate', data=df).fit()

print(model.summary2())

print(model.params)

anovatable=sm.stats.anova_lm(model)

  

ax = sns.residplot(x=model.predict(df.Temperature), y=df.Viscosity, lowess=False, color='black')

ax.set_xlabel('Fitted value')

ax.set_ylabel('Residuals')

plt.show()

ax = sns.residplot(x=model.predict(df.Rate), y=df.Viscosity, lowess=False, color='black')

ax.set_xlabel('Fitted value')

ax.set_ylabel('Residuals')

plt.show()

>>> print(model.summary2())

C:\Users\Administrator\AppData\Local\Programs\Python\Python311\Lib\site-packages\scipy\stats\_stats_py.py:1736: UserWarning: kurtosistest only valid for n>=20 ... continuing anyway, n=16

  warnings.warn("kurtosistest only valid for n>=20 ... continuing "

                  Results: Ordinary least squares

====================================================================

Model:               OLS               Adj. R-squared:      0.916

Dependent Variable:  df.Viscosity      AIC:                 137.5159

Date:                2024-03-14 10:31  BIC:                 139.8337

No. Observations:    16                Log-Likelihood:      -65.758

Df Model:            2                 F-statistic:         82.50

Df Residuals:        13                Prob (F-statistic):  4.10e-08

R-squared:           0.927             Scale:               267.60

--------------------------------------------------------------------

                 Coef.   Std.Err.    t    P>|t|    [0.025    0.975]

--------------------------------------------------------------------

Intercept      1566.0778  61.5918 25.4267 0.0000 1433.0167 1699.1388

df.Temperature    7.6213   0.6184 12.3236 0.0000    6.2853    8.9573

df.Catalyst       8.5848   2.4387  3.5203 0.0038    3.3164   13.8533

--------------------------------------------------------------------

Omnibus:                1.215         Durbin-Watson:           2.607

Prob(Omnibus):          0.545         Jarque-Bera (JB):        0.779

Skew:                   -0.004        Prob(JB):                0.677

Kurtosis:               1.919         Condition No.:           1385

====================================================================

Notes:

[1] Standard Errors assume that the covariance matrix of the errors

is correctly specified.

[2] The condition number is large, 1.38e+03. This might indicate

that there are strong multicollinearity or other numerical

problems.

>>> print(model.params)

Intercept         1566.077771

df.Temperature       7.621290

df.Catalyst          8.584846

dtype: float64

>>> anovatable=sm.stats.anova_lm(model)

>>> anovatable

                  df        sum_sq       mean_sq           F        PR(>F)

df.Temperature   1.0  40840.842466  40840.842466  152.616757  1.473645e-08

df.Catalyst      1.0   3316.244074   3316.244074   12.392360  3.764806e-03

Residual        13.0   3478.850960    267.603920         NaN           NaN

http://www.dtcms.com/wzjs/439898.html

相关文章:

  • 页面设计英文seo整站优化系统
  • 软件研发项目管理系统站内关键词自然排名优化
  • 织梦技术网站模版福州百度关键词优化
  • 什么样的网站可以做外链王通seo教程
  • 如何知道自己网站租用的服务器去uc搜索引擎入口
  • 湖北省建设厅乡镇污水官方网站南京网络推广外包
  • 响应式电商网站重庆网站推广联系方式
  • 用php做的大型网站seo网站诊断价格
  • 上海网站营整合营销传播最基础的形式是
  • jekyll做公司网站semaphore
  • 湛江网站seo优化一下
  • wordpress 阿里百秀 主题温州网站优化推广方案
  • 公司的官方网站怎么做鸿星尔克网络营销
  • 用dw做的网站怎么发到网上商家怎么入驻百度
  • 西安哪里找做网站公司在线优化网站
  • wordpress 电影网站seo外贸公司推广
  • 江苏中淮建设集团有限公司网站网络推广优化网站
  • 极路由 做网站谷歌关键词查询工具
  • 网站制作报价多少网络怎么推广自己的产品
  • 做毕业设计实物的网站徐州百度seo排名
  • 张家口做网站的成都seo推广
  • 专门做旅游攻略的网站app注册推广团队
  • 网站怎么做交易市场最新新闻热点事件
  • 网站开发和网站制作的区别seo分析报告
  • 泊头市网站建设公司太仓seo网站优化软件
  • 网站建设功能模块几报价百度引擎搜索入口
  • 成都市建设招标网站2345网址导航官网下载
  • 做域名跳转非法网站负什么责任淘宝怎么提高关键词搜索排名
  • 邵阳做网站哪家好搜索推广广告
  • 互联网站开发网络培训心得