当前位置: 首页 > wzjs >正文

网易云播放器做网站播放如何快速搭建网站

网易云播放器做网站播放,如何快速搭建网站,wordpress页面判断,房屋租赁合同优化理论 梯度下降(Gradient Descent) 数学原理与可视化 梯度下降是优化领域的基石算法,其核心思想是沿负梯度方向迭代更新参数。数学表达式为: θ t 1 θ t − α ∇ θ J ( θ t ) \theta_{t1} \theta_t - \alpha \nabla…

优化理论

梯度下降(Gradient Descent)

数学原理与可视化

梯度下降是优化领域的基石算法,其核心思想是沿负梯度方向迭代更新参数。数学表达式为:
θ t + 1 = θ t − α ∇ θ J ( θ t ) \theta_{t+1} = \theta_t - \alpha \nabla_\theta J(\theta_t) θt+1=θtαθJ(θt)
其中:

  • α \alpha α:学习率,控制步长
  • ∇ θ J \nabla_\theta J θJ:损失函数关于参数的梯度

几何解释:在三维空间中,梯度下降如同沿着最陡下降方向下山。二维可视化展示参数更新路径:

import matplotlib.pyplot as plt
import numpy as np# 定义二次函数及其梯度
def f(x): return x**2
def grad(x): return 2*x# 梯度下降轨迹可视化
x_path = []
x = 2.0
lr = 0.1
for _ in range(20):x_path.append(x)x -= lr * grad(x)# 绘制函数曲线和更新路径
xs = np.linspace(-2, 2, 100)
plt.figure(figsize=(10,6))
plt.plot(xs, f(xs), label="f(x) = x²")
plt.scatter(x_path, [f(x) for x in x_path], c='red', s=50, zorder=3)
plt.plot(x_path, [f(x) for x in x_path], 'r--', label="gradient descent path")
plt.title("梯度下降在二次函数上的优化轨迹", fontsize=14)
plt.xlabel("x", fontsize=12)
plt.ylabel("f(x)", fontsize=12)
plt.legend()
plt.grid(True, alpha=0.3)
plt.show()

在这里插入图片描述

学习率对比实验

lrs = [0.01, 0.1, 0.5]  # 不同学习率plt.figure(figsize=(12,6))
for lr in lrs:x = 2.0path = []for _ in range(20):path.append(x)x -= lr * grad(x)plt.plot(path, label=f"lr={lr}")plt.title("不同学习率对收敛速度的影响", fontsize=14)
plt.xlabel("Number of iterations", fontsize=12)
plt.ylabel("Parameter value", fontsize=12)
plt.axhline(0, color='black', linestyle='--')
plt.legend()
plt.grid(True, alpha=0.3)

在这里插入图片描述


随机梯度下降(Stochastic Gradient Descent, SGD)

算法原理

与传统梯度下降的对比:

方法梯度计算内存需求收敛性适用场景
批量梯度下降全数据集稳定小数据集
SGD单样本震荡在线学习
小批量SGD批量样本平衡最常见

数学表达式:
θ t + 1 = θ t − α ∇ θ J ( θ t ; x ( i ) , y ( i ) ) \theta_{t+1} = \theta_t - \alpha \nabla_\theta J(\theta_t; x^{(i)}, y^{(i)}) θt+1=θtαθJ(θt;x(i),y(i))

实际应用示例(MNIST分类)

import torchvision
from torch.utils.data import DataLoader# 数据准备
transform = torchvision.transforms.Compose([torchvision.transforms.ToTensor(),torchvision.transforms.Normalize((0.1307,), (0.3081,))
])
train_set = torchvision.datasets.MNIST('./data', train=True, download=True, transform=transform)
train_loader = DataLoader(train_set, batch_size=64, shuffle=True)# 模型定义
model = torch.nn.Sequential(torch.nn.Flatten(),torch.nn.Linear(784, 10)
)# 优化器配置
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)# 训练循环
losses = []
for epoch in range(5):for batch_idx, (data, target) in enumerate(train_loader):optimizer.zero_grad()output = model(data)loss = torch.nn.functional.cross_entropy(output, target)loss.backward()optimizer.step()# 记录损失losses.append(loss.item())# 绘制损失曲线
plt.figure(figsize=(12,6))
plt.plot(losses, alpha=0.6)
plt.title("SGD在MNIST分类任务中的损失曲线", fontsize=14)
plt.xlabel("Number of iterations", fontsize=12)
plt.ylabel("Cross-entropy loss", fontsize=12)
plt.grid(True, alpha=0.3)

在这里插入图片描述


动量法(Momentum)

物理类比与数学表达

动量法引入速度变量 v v v,模拟物体运动惯性:

更新规则:
v t + 1 = β v t − α ∇ θ J ( θ t ) θ t + 1 = θ t + v t + 1 \begin{aligned} v_{t+1} &= \beta v_t - \alpha \nabla_\theta J(\theta_t) \\ \theta_{t+1} &= \theta_t + v_{t+1} \end{aligned} vt+1θt+1=βvtαθJ(θt)=θt+vt+1

其中 β ∈ [ 0 , 1 ) \beta \in [0,1) β[0,1)为动量系数,典型值为0.9

对比实验

def optimize_with_momentum(lr=0.01, beta=0.9):x = torch.tensor([2.0], requires_grad=True)velocity = 0path = []for _ in range(20):path.append(x.item())loss = x**2loss.backward()with torch.no_grad():velocity = beta * velocity - lr * x.gradx += velocityx.grad.zero_()return path# 运行对比实验
paths = {'普通SGD': optimize_with_momentum(beta=0),'动量法(beta=0.9)': optimize_with_momentum()
}# 可视化对比
plt.figure(figsize=(12,6))
for label, path in paths.items():plt.plot(path, marker='o', linestyle='--', label=label)plt.title("动量法与普通SGD收敛对比", fontsize=14)
plt.xlabel("Number of iterations", fontsize=12)
plt.ylabel("Parameter value", fontsize=12)
plt.axhline(0, color='black', linestyle='--')
plt.legend()
plt.grid(True, alpha=0.3)

在这里插入图片描述


算法选择指南

算法优点缺点适用场景
梯度下降稳定收敛计算成本高小规模数据集
SGD内存需求低收敛路径震荡在线学习、大规模数据
动量法加速收敛、抑制震荡需调参动量系数高维非凸优化

实践建议

  1. 学习率设置:从3e-4开始尝试,按数量级调整
  2. 批量大小:通常选择2的幂次(32, 64, 128)
  3. 动量系数:默认0.9,对RNN可尝试0.99
  4. 学习率衰减:配合StepLR或CosineAnnealing使用效果更佳
# 最佳实践示例:带学习率衰减的动量SGD
optimizer = torch.optim.SGD(model.parameters(),lr=0.1,momentum=0.9,weight_decay=1e-4  # L2正则化
)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1)
http://www.dtcms.com/wzjs/439392.html

相关文章:

  • 重庆雕塑制作西安网站seo优化公司
  • 企业型网站建设费用新闻近期大事件
  • 学校网站开发实际意义企业网站推广策划
  • 文旅网站界面设计中国进入一级战备状态了吗
  • 兰州seo安安网站建设西安网站排名优化培训
  • 建设 政务数据共享网站网站排名前十
  • 深圳市门户网站建设企业品牌营销策划ppt
  • 深圳互联时空网站优化怎么样seo搜索引擎优化实训总结
  • 游戏开发网站开发如何去做网络营销
  • 网站备案域名转公司吸引人的营销标题
  • 手机网站 源码百度推广需要多少钱
  • 西宁房地产网站建设商品标题关键词优化
  • 做直播哪个网站好河源市企业网站seo价格
  • 域名访问网站怎么下载成都百度推广开户公司
  • wordpress图片本地北京seo人员
  • 中小企业网站建设报告做网站的公司有哪些
  • 长沙网站推广智投未来深圳网络推广工资
  • 外包做网站的会给你什么公司做网站怎么做
  • 济南专业做网站抖音seo排名优化
  • 专业购物网站建设网络软文发布平台
  • 网站优化公司电话站长工具seo查询
  • 子页面的网站地址怎么做百度人工服务热线电话
  • 网站上的动效是用ae做的八爪鱼磁力搜索引擎
  • 专业网站制作公司案例狠抓措施落实
  • 做的网站如何放在电脑上外贸营销网站制作公司
  • 设计师导航网站福州seo经理招聘
  • 多种语言网站制作信息流优化师证书
  • tp5网站开发步骤情感网站seo
  • 网站建设装什么系统友情链接有用吗
  • 网站分类 维护免费获客软件