当前位置: 首页 > wzjs >正文

网页设计公司名称百度seo关键词优化电话

网页设计公司名称,百度seo关键词优化电话,温州做网站哪家比较好,网络组建与应用实训报告目录 1.摘要2.改进策略3.结果展示4.参考文献5.代码获取 1.摘要 在专家系统中,复杂的优化问题通常具有非线性、非凸、多模态和不连续的特点。粒子群算法(PSO)作为一种高效且简单的优化算法,已广泛应用于解决这些实际问题。然而&am…

目录

    • 1.摘要
    • 2.改进策略
    • 3.结果展示
    • 4.参考文献
    • 5.代码获取


1.摘要

在专家系统中,复杂的优化问题通常具有非线性、非凸、多模态和不连续的特点。粒子群算法(PSO)作为一种高效且简单的优化算法,已广泛应用于解决这些实际问题。然而,如何避免早熟收敛并平衡PSO的全局探索能力和局部开发能力,仍然是一个待解决的挑战。因此,本文提出了一种自适应策略粒子群算法(MPSO),MPSO通过引入基于混沌的非线性惯性权重来平衡全局探索和局部开发能力,避免早熟收敛。MPSO采用了随机和主流学习策略,以及自适应位置更新策略和终止替换机制,从而增强了其解决复杂优化问题的能力。

2.改进策略

混沌惯性权重

在PSO中,惯性权重 w w w作为一个重要参数,能够根据不同环境动态调整粒子的行为,从而实现探索和开发之间的平衡。通常,惯性权重采用线性方法,但非线性惯性权重具有更强的拟合和模拟能力。混沌作为一种非线性映射,能够生成具有良好随机性和无序性的随机数,因此在进化计算领域得到了广泛应用,本文将Logistic混沌引入惯性权重,从而构建了非线性惯性权重:
r ( t + 1 ) = 4 r ( t ) ( 1 − r ( t ) ) , r ( 0 ) = r a n d r(t+1)=4r(t)(1-r(t)),r(0)=rand r(t+1)=4r(t)(1r(t)),r(0)=rand
ω ( t ) = r ( t ) ⋅ ω m i n + ( ω m a x − ω m i n ) ⋅ t T m a x \omega(t)=r(t)\cdot\omega_{min}+\frac{(\omega_{max}-\omega_{min})\cdot t}{T_{max}} ω(t)=r(t)ωmin+Tmax(ωmaxωmin)t

随机学习策略和主流学习策略

在PSO中,粒子通过个体最佳解 P b e s t Pbest Pbest和全局最佳解 G b e s t Gbest Gbest进行学习,更新其速度和位置。随机学习策略使粒子能够从种群中其他优秀个体中学习,从而增加粒子运动的多样性。在每次迭代中,随机选择种群中两个互不相同的个体最佳粒子,并将更优的个人最佳解作为候选个人最佳解 C P b e s t CPbest CPbest,通过比较当前个体最佳解 P b e s t i Pbest_i Pbesti C P b e s t CPbest CPbest的适应度值,选择更优的解作为最终的随机个人最佳解 S P b e s t SPbest SPbest
C P b e s t ( t ) = a r g m i n { f i t ( P b e s t a ( t ) ) , f i t ( P b e s t b ( t ) ) } , a ≠ b ∈ { 1 , 2 , ⋯ , N } \begin{array} {c}CPbest(t)=argmin\{fit(Pbest_a(t)),fit(Pbest_b(t))\}, \\ a\neq b\in\{1,2,\cdots,N\} \end{array} CPbest(t)=argmin{fit(Pbesta(t)),fit(Pbestb(t))},a=b{1,2,,N}

S P b e s t i ( t ) = { C P b e s t ( t ) if  f i t ( C P b e s t ) < f i t ( P b e s t i ) P b e s t i ( t ) otherwise \begin{equation} SPbest_i(t) = \begin{cases} CPbest(t) & \text{if } fit(CPbest) < fit(Pbest_i) \\ Pbest_i(t) & \text{otherwise} \end{cases} \end{equation} SPbesti(t)={CPbest(t)Pbesti(t)if fit(CPbest)<fit(Pbesti)otherwise

本文引入了一个全局粒子 M b e s t Mbest Mbest,它被定义为所有粒子个体最佳位置的均值:
M b e s t ( t ) = m e a n { P b e s t 1 , P b e s t 2 , … , P b e s t N } Mbest(t)=mean\{Pbest_1,Pbest_2,\ldots,Pbest_N\} Mbest(t)=mean{Pbest1,Pbest2,,PbestN}

速度更新:
V i ( t + 1 ) = ω ( t ) V i ( t ) + r 1 c 1 ⊗ ( S P b e s t i ( t ) − X i ( t ) ) + r 2 c 2 ⊗ ( M b e s t ( t ) − X i ( t ) ) V_i(t+1)=\omega(t)V_i(t)+r_1c_1\otimes(SPbest_i(t)-X_i(t))+r_{2}c_{2}\otimes(Mbest(t)-X_{i}(t)) Vi(t+1)=ω(t)Vi(t)+r1c1(SPbesti(t)Xi(t))+r2c2(Mbest(t)Xi(t))

自适应位置更新策略

为了更好地平衡局部开发和全局探索,本文提出了一种自适应位置更新机制,粒子可以根据相应的条件选择不同的位置更新策略,从而更好地平衡探索与开发:
p i = e x p ( f i t ( X i ( t ) ) ) e x p ( 1 N ∑ i = 1 N f i t ( X i ( t ) ) ) p_i=\frac{exp(fit(X_i(t)))}{exp\left(\frac{1}{N}\sum_{i=1}^Nfit(X_i(t))\right)} pi=exp(N1i=1Nfit(Xi(t)))exp(fit(Xi(t)))
X i ( t + 1 ) = { ω ( t ) X i ( t ) + ( 1 − ω ( t ) ) V i ( t + 1 ) + G b e s t ( t ) p i > r a n d X i ( t ) + V i ( t + 1 ) o t h e r w i s e X_i(t+1)= \begin{cases} \omega(t)X_i(t)+(1-\omega(t))V_i(t+1)+Gbest(t) & \quad p_i>rand \\ X_i(t)+V_i(t+1) & \quad otherwise & \end{cases} Xi(t+1)={ω(t)Xi(t)+(1ω(t))Vi(t+1)+Gbest(t)Xi(t)+Vi(t+1)pi>randotherwise

终止替换机制

为了增强种群的多样性并提高MPSO在复杂问题上的表现,引入了终止更新机制,该机制灵感来源于自然界中的优胜劣汰规则,在每次迭代中,全局最差粒子 G w o r s t Gworst Gworst将被替换:
G w o r s t ( t ) = a r g m a x { f i t ( P b e s t 1 ( t ) ) , f i t ( P b e s t 2 ( t ) ) , ⋯ , f i t ( P b e s t N ( t ) ) } Gworst(t)=argmax\{fit(Pbest_1(t)),fit(Pbest_2(t)),\cdots,fit(Pbest_N(t))\} Gworst(t)=argmax{fit(Pbest1(t)),fit(Pbest2(t)),,fit(PbestN(t))}
N b e s t ( t ) = G b e s t ( t ) + r a n d ⋅ ( P b e s t j ( t ) − P b e s t k ( t ) ) , j ≠ k ∈ { 1 , 2 , ⋯ , N } \begin{aligned} Nbest(t) & =Gbest(t)+rand\cdot\left(Pbest_j(t)-Pbest_k(t)\right), \\ j & \neq k\in\{1,2,\cdots,N\} \end{aligned} Nbest(t)j=Gbest(t)+rand(Pbestj(t)Pbestk(t)),=k{1,2,,N}

$$
\begin{equation}
Gworst(t) =
\begin{cases}
Nbest(t) & \text{if } fit(Nbest(t)) < fit(Gworst(t)) \
Gworst(t) & \text{otherwise}
\end{cases}
\end{equation}

$$

伪代码

3.结果展示


4.参考文献

[1] Liu H, Zhang X W, Tu L P. A modified particle swarm optimization using adaptive strategy[J]. Expert systems with applications, 2020, 152: 113353.

5.代码获取

http://www.dtcms.com/wzjs/437877.html

相关文章:

  • 北京做网站的公司哪家好seo网上培训多少钱
  • 具有品牌的广州做网站四川seo
  • 做网站分类链接网站页面的优化
  • 传统门户网站有哪些广州优化防控措施
  • 炫酷的个人网站百家号关键词seo优化
  • 葡萄城网站建设网站快速优化排名软件
  • 怎么用iapp做网站软件沈阳网站关键词优化公司
  • 广州网站设计公司招聘泉州百度竞价公司
  • 宁波网站开发制作网站seo外包靠谱吗
  • 网站联盟广告名词解释网站链接推广工具
  • 网站后台密码文件厦门seo培训学校
  • 制作网站公司首 荐乐云seo专家有哪些免费推广网站
  • 加急网站备案万网域名注册教程
  • 企业品牌推广网站国外十大免费服务器和域名
  • 重新建设网站的申请报告网络营销策划书
  • WordPress360收录网站关键词优化排名外包
  • 网站建设和网站优化哪个更重要宝鸡百度seo
  • 滕州建网站哪家好二次感染即将大爆发
  • 佛山做网站哪家好b站视频推广app
  • 大连本地网湖南企业seo优化首选
  • 深圳专业做网站排名哪家好招商外包公司
  • 《jsp动态网站开发》百度官网首页登陆
  • 查询网站开发网站建设详细方案模板
  • 做盗版视频网站违法吗西安今日头条新闻消息
  • 应用市场appseo与sem的区别和联系
  • 小草网络 网站建设焊工培训心得体会
  • wordpress 自定义侧边栏需要优化的地方
  • WordPress主题增加说说页面宁波seo优化流程
  • 做网站需要到什么技术优秀营销软文范例800字
  • 鹿泉营销型网站制作价格低百度电脑版官网下载