当前位置: 首页 > wzjs >正文

镇江网站建设咨询百度广告多少钱

镇江网站建设咨询,百度广告多少钱,源云推广,怎么用apache做网站在深度学习领域,YOLO(You Only Look Once)系列模型因其高效和准确性而广受欢迎。然而,随着项目需求的变化,有时我们需要对预训练模型的配置文件进行调整。本文将详细介绍如何使用Python脚本自动转换YOLOv5的配置文件到…

在深度学习领域,YOLO(You Only Look Once)系列模型因其高效和准确性而广受欢迎。然而,随着项目需求的变化,有时我们需要对预训练模型的配置文件进行调整。本文将详细介绍如何使用Python脚本自动转换YOLOv5的配置文件到https://github.com/ultralytics/ultralytics,并解释每个步骤的目的和实现方法。

准备工作

首先,确保安装了必要的库:

pip install pyyaml

代码详解

定义格式化和过滤函数

def format_and_filter_list(lst):formatted_items = []for item in lst:if isinstance(item, list):processed_item = format_and_filter_list(item)if processed_item:  # 只添加非空列表formatted_items.append(processed_item)elif isinstance(item, str):if item == 'nearest':formatted_items.append(f"'{item}'")elif item != 'anchors':  # 过滤掉 'anchors'formatted_items.append(item)else:formatted_items.append(str(item))return f"[{', '.join(formatted_items)}]"

定义转换配置函数

def transform_config(original_config):transformed = {'nc': original_config['nc'],  # number of classes'scales': {'n': [original_config['depth_multiple'], original_config['width_multiple'], 1024]},'backbone': [],'head': []}# Transform backbonefor layer in original_config['backbone']:if not isinstance(layer, list):layer = [layer]transformed['backbone'].append(layer)# Adjust the head to match the desired format, also updating nc and anchors usagefor i, layer in enumerate(original_config['head']):if not isinstance(layer, list):layer = [layer]if isinstance(layer[0], list) and len(layer[0]) > 3 and layer[0][3] == 'Detect':layer[0][3] = ['nc', 'anchors']transformed['head'].append([layer[0]])else:transformed['head'].append(layer)# Special case: update the final Detect layer configurationif transformed['head'] and isinstance(transformed['head'][-1], list) and transformed['head'][-1]:last_layer = transformed['head'][-1]if isinstance(last_layer[0], list) and len(last_layer[0]) > 3:last_layer[0][3] = ['nc']return transformed

定义主函数以更改YAML文件


def change_yaml(yolov5_config):# Check if input file existsif not os.path.exists(yolov5_config):print(f"Error: Input file '{yolov5_config}' does not exist.")else:old_path = os.path.dirname(yolov5_config)save_path = os.path.dirname(old_path)new_yaml_name_path = os.path.join(save_path, "yolov5_" + os.path.basename(yolov5_config))# Load your YAML filewith open(yolov5_config, 'r') as file:try:original_config = yaml.safe_load(file)except yaml.YAMLError as exc:print(f"Error: Failed to parse YAML file. {exc}")exit(1)transformed_config = transform_config(original_config)# Ensure that each element in backbone and head is a listdef ensure_list_format(config_part):new_config_part = []for item in config_part:if not isinstance(item, list):item = [item]new_config_part.append(item)return new_config_parttransformed_config['backbone'] = ensure_list_format(transformed_config['backbone'])transformed_config['head'] = ensure_list_format(transformed_config['head'])# Generate the formatted YAML contentformatted_yaml_content = f"""# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license# Ultralytics YOLOv5 object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov5
# Task docs: https://docs.ultralytics.com/tasks/detect# Parameters
nc: {transformed_config['nc']} # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov5n.yaml' will call yolov5.yaml with scale 'n'# [depth, width, max_channels]n: {transformed_config['scales']['n']}
# YOLOv5 v6.0 backbone
backbone:
"""for layer in transformed_config['backbone']:layer = format_and_filter_list(layer)print(layer)formatted_yaml_content += f"  - {layer}\n"formatted_yaml_content += """
# YOLOv5 v6.0 head with (P2, P3, P4, P5) outputs
head:
"""for layer in transformed_config['head']:print(layer)if isinstance(layer, list) and layer[2] == 'Conv':formatted_yaml_content += '\n'layer = format_and_filter_list(layer)print(layer)formatted_yaml_content += f"  - {layer}\n"# Save the transformed configuration to a new YAML filewith open(new_yaml_name_path, 'w') as file:file.write(formatted_yaml_content)print(f"Configuration has been transformed and saved to '{new_yaml_name_path}'.")

批量处理多个配置文件

input_path = "/media/lindsay/data/ultralytics-main/ultralytics/cfg/models/v5/yolov5"
input_path_list = [os.path.join(input_path, i) for i in os.listdir(input_path)]
for i in input_path_list:change_yaml(i)

总结

通过上述步骤,您可以轻松地将YOLOv5的配置文件转换为ultralytics-yolov8所需的格式,并且可以批量处理多个配置文件。这个脚本不仅可以帮助您节省时间,还能减少手动操作带来的错误。希望这篇博客能为您提供有价值的指导,让您更高效地管理深度学习项目的配置文件。

完整代码

import yaml
import os# 函数用于格式化列表为所需形式
def format_and_filter_list(lst):formatted_items = []for item in lst:if isinstance(item, list):# 如果是列表类型,则递归调用此函数进行格式化和过滤processed_item = format_and_filter_list(item)if processed_item:  # 只添加非空列表formatted_items.append(processed_item)elif isinstance(item, str):# 特殊处理需要保留引号的字符串if item == 'nearest':formatted_items.append(f"'{item}'")elif item != 'anchors':  # 过滤掉 'anchors'formatted_items.append(item)else:# 其他类型直接转换成字符串表示formatted_items.append(str(item))# 返回格式化后的列表字符串表示return f"[{', '.join(formatted_items)}]"def transform_config(original_config):transformed = {'nc': original_config['nc'],  # number of classes'scales': {'n': [original_config['depth_multiple'], original_config['width_multiple'], 1024]},'backbone': [],'head': []}# Transform backbonefor layer in original_config['backbone']:if not isinstance(layer, list):layer = [layer]transformed['backbone'].append(layer)# Adjust the head to match the desired format, also updating nc and anchors usagefor i, layer in enumerate(original_config['head']):if not isinstance(layer, list):layer = [layer]if isinstance(layer[0], list) and len(layer[0]) > 3 and layer[0][3] == 'Detect':# Update Detect layer to use 'nc' instead of specific numbers for classeslayer[0][3] = ['nc', 'anchors']transformed['head'].append([layer[0]])else:transformed['head'].append(layer)# Special case: update the final Detect layer configurationif transformed['head'] and isinstance(transformed['head'][-1], list) and transformed['head'][-1]:last_layer = transformed['head'][-1]if isinstance(last_layer[0], list) and len(last_layer[0]) > 3:last_layer[0][3] = ['nc']return transformeddef change_yaml(yolov5_config):# Check if input file existsif not os.path.exists(yolov5_config):print(f"Error: Input file '{yolov5_config}' does not exist.")else:old_path = os.path.dirname(yolov5_config)save_path = os.path.dirname(old_path)new_yaml_name_path = os.path.join(save_path, "yolov5_" + os.path.basename(yolov5_config))# Load your YAML filewith open(yolov5_config, 'r') as file:try:original_config = yaml.safe_load(file)except yaml.YAMLError as exc:print(f"Error: Failed to parse YAML file. {exc}")exit(1)transformed_config = transform_config(original_config)# Ensure that each element in backbone and head is a listdef ensure_list_format(config_part):new_config_part = []for item in config_part:if not isinstance(item, list):item = [item]new_config_part.append(item)return new_config_parttransformed_config['backbone'] = ensure_list_format(transformed_config['backbone'])transformed_config['head'] = ensure_list_format(transformed_config['head'])# Generate the formatted YAML contentformatted_yaml_content = f"""# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license# Ultralytics YOLOv5 object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov5
# Task docs: https://docs.ultralytics.com/tasks/detect# Parameters
nc: {transformed_config['nc']} # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov5n.yaml' will call yolov5.yaml with scale 'n'# [depth, width, max_channels]n: {transformed_config['scales']['n']}
# YOLOv5 v6.0 backbone
backbone:
"""for layer in transformed_config['backbone']:layer = format_and_filter_list(layer)print(layer)formatted_yaml_content += f"  - {layer}\n"formatted_yaml_content += """
# YOLOv5 v6.0 head with (P2, P3, P4, P5) outputs
head:
"""for layer in transformed_config['head']:print(layer)if isinstance(layer, list) and layer[2] == 'Conv':formatted_yaml_content += '\n'layer = format_and_filter_list(layer)print(layer)formatted_yaml_content += f"  - {layer}\n"# Save the transformed configuration to a new YAML filewith open(new_yaml_name_path, 'w') as file:file.write(formatted_yaml_content)print(f"Configuration has been transformed and saved to '{new_yaml_name_path}'.")input_path = "/media/lindsay/data/ultralytics-main/ultralytics/cfg/models/v5/yolov5"
input_path_list = [os.path.join(input_path, i) for i in os.listdir(input_path)]
for i in input_path_list:change_yaml(i)
http://www.dtcms.com/wzjs/432276.html

相关文章:

  • 一级a做爰片试看 免费网站脱发严重是什么原因引起的
  • 成都营销型网站建设网站为什么要seo
  • WordPress搭载个人博客seo成创网络
  • 中国核工业第五建设公司网站西地那非片的正确服用方法
  • 网站流量统计平台武汉seo网站优化运营
  • 长寿网站建设长沙网站策划
  • 网站开发服务合同范本起飞页自助建站平台
  • 网站开发工程师待遇黑马程序员培训机构在哪
  • 网件路由器做网站软广告经典案例
  • 网站建设是永久使用吗爱站网排名
  • 企业网站管理系统 源码seo公司是做什么的
  • 太原微网站建设网站友情链接美化代码
  • 网站服务器空间大小网站模板大全
  • 做跨境电商一件代发的网站游戏推广怎么找玩家
  • 呼市互联网公司排名天津网站优化软件
  • 德兴网站建设公司百度做广告多少钱一天
  • wordpress的模版文件夹百度seo排名优化如何
  • 全景网站建设樱桃bt官网
  • 淘宝客网站怎么做的seo网络推广优势
  • 做批发的网站有哪些百度竞价推广开户联系方式
  • 深圳建站模板购买免费企业网站建设流程
  • 北航刘禹导师做网站舆情通
  • wordpress建站网站报错网站建设流程
  • 网站登录注册怎么做的北京seo顾问外包
  • 重庆企业做网站公司网页怎么做
  • 什么网站有项目做百度引流推广哪家好
  • wordpress本地卸载插件东莞整站优化
  • 在招聘网站里做电话销售百度手机助手下载安装
  • 四川省建设人才网站网络营销策划方案范文
  • 上门做睫毛哪个网站网站优化 seo和sem