当前位置: 首页 > wzjs >正文

涿州做网站百度联盟个人怎么接广告

涿州做网站,百度联盟个人怎么接广告,厦门市建设工程造价网,手机网站建设做竞价推广的技巧在做目标检测项目,尤其是基于 YOLOv5 或 YOLOv7 的改进实验时,我发现不同注意力机制对模型性能的提升确实有明显影响,比如提高小目标检测能力、增强特征表达等。但每次找代码都得翻论文、找 GitHub,效率很低。所以我干脆把常见的注…

在做目标检测项目,尤其是基于 YOLOv5 或 YOLOv7 的改进实验时,我发现不同注意力机制对模型性能的提升确实有明显影响,比如提高小目标检测能力、增强特征表达等。但每次找代码都得翻论文、找 GitHub,效率很低。所以我干脆把常见的注意力模块(比如 SE、CBAM、ShuffleAttention、SimAM 等)都整理到一起,统一了格式和接口,方便自己后续做结构替换和对比实验。这个整理也能帮助我更系统地理解各类注意力机制的原理和实现方式,也希望能为有类似需求的人提供一些参考。


后续会基于注意机制与 YOLO 目标检测进行融合,欢迎各位关注➕收藏


文章目录

      • 🔹 1. SEAttention(Squeeze-and-Excitation Attention)
      • 🔹 2. ShuffleAttention
      • 🔹 3. CrissCrossAttention(CCA)
      • 🔹 4. S2-MLPv2 Attention
      • 🔹 5. SimAM
      • 🔹 6. SKAttention(Selective Kernel)
      • 🔹 7. NAMAttention(Normalization-based Attention)
      • 🔹 8. SOCA(Second-order Channel Attention)
      • 🔹 9. CBAM(Convolutional Block Attention Module)
      • 🔹 10. GAMAttention
      • 🔹 11. Coordinate attention
      • 🔹 12. Efficient Channel Attention(ECA)

🔹 1. SEAttention(Squeeze-and-Excitation Attention)

来源:
https://arxiv.org/abs/1709.01507
机制:
全局平均池化 → 两层 MLP → Sigmoid → 通道权重调整

class SEAttention(nn.Module):def __init__(self, channel=512,reduction=16):super().__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.fc = nn.Sequential(nn.Linear(channel, channel // reduction, bias=False),nn.ReLU(inplace=True),nn.Linear(channel // reduction, channel, bias=False),nn.Sigmoid())def init_weights(self):for m in self.modules():if isinstance(m, nn.Conv2d):init.kaiming_normal_(m.weight, mode='fan_out')if m.bias is not None:init.constant_(m.bias, 0)elif isinstance(m, nn.BatchNorm2d):init.constant_(m.weight, 1)init.constant_(m.bias, 0)elif isinstance(m, nn.Linear):init.normal_(m.weight, std=0.001)if m.bias is not None:init.constant_(m.bias, 0)def forward(self, x):b, c, _, _ = x.size()y = self.avg_pool(x).view(b, c)y = self.fc(y).view(b, c, 1, 1)return x * y.expand_as(x)

🔹 2. ShuffleAttention

来源:
https://arxiv.org/pdf/2102.00240.pdf
机制:
通道注意力 + 空间注意力,利用 GroupNorm 和 Shuffle 操作

class ShuffleAttention(nn.Module):def __init__(self, channel=512,reduction=16,G=8):super().__init__()self.G=Gself.channel=channelself.avg_pool = nn.AdaptiveAvgPool2d(1)self.gn = nn.GroupNorm(channel // (2 * G), channel // (2 * G))self.cweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1))self.cbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))self.sweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1))self.sbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))self.sigmoid=nn.Sigmoid()def init_weights(self):for m in self.modules():if isinstance(m, nn.Conv2d):init.kaiming_normal_(m.weight, mode='fan_out')if m.bias is not None:init.constant_(m.bias, 0)elif isinstance(m, nn.BatchNorm2d):init.constant_(m.weight, 1)init.constant_(m.bias, 0)elif isinstance(m, nn.Linear):init.normal_(m.weight, std=0.001)if m.bias is not None:init.constant_(m.bias, 0)@staticmethoddef channel_shuffle(x, groups):b, c, h, w = x.shapex = x.reshape(b, groups, -1, h, w)x = x.permute(0, 2, 1, 3, 4)# flattenx = x.reshape(b, -1, h, w)return xdef forward(self, x):b, c, h, w = x.size()#group into subfeaturesx=x.view(b*self.G,-1,h,w) #bs*G,c//G,h,w#channel_splitx_0,x_1=x.chunk(2,dim=1) #bs*G,c//(2*G),h,w#channel attentionx_channel=self.avg_pool(x_0) #bs*G,c//(2*G),1,1x_channel=self.cweight*x_channel+self.cbias #bs*G,c//(2*G),1,1x_channel=x_0*self.sigmoid(x_channel)#spatial attentionx_spatial=self.gn(x_1) #bs*G,c//(2*G),h,wx_spatial=self.sweight*x_spatial+self.sbias #bs*G,c//(2*G),h,wx_spatial=x_1*self.sigmoid(x_spatial) #bs*G,c//(2*G),h,w# concatenate along channel axisout=torch.cat([x_channel,x_spatial],dim=1)  #bs*G,c//G,h,wout=out.contiguous().view(b,-1,h,w)# channel shuffleout = self.channel_shuffle(out, 2)return out

🔹 3. CrissCrossAttention(CCA)

来源: CCNet-Pure-Pytorch
机制: 分别在 H 和 W 方向做注意力交叉计算,融合上下文

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Softmaxdef INF(B,H,W):return -torch.diag(torch.tensor(float("inf")).repeat(H),0).unsqueeze(0).repeat(B*W,1,1)class CrissCrossAttention(nn.Module):""" Criss-Cross Attention Module"""def __init__(self, in_dim):super(CrissCrossAttention,self).__init__()self.query_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim//8, kernel_size=1)self.key_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim//8, kernel_size=1)self.value_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1)self.softmax = Softmax(dim=3)self.INF = INFself.gamma = nn.Parameter(torch.zeros(1))def forward(self, x):m_batchsize, _, height, width = x.size()proj_query = self.query_conv(x)proj_query_H = proj_query.permute(0,3,1,2).contiguous().view(m_batchsize*width,-1,height).permute(0, 2, 1)proj_query_W = proj_query.permute(0,2,1,3).contiguous().view(m_batchsize*height,-1,width).permute(0, 2, 1)proj_key = self.key_conv(x)proj_key_H = proj_key.permute(0,3,1,2).contiguous().view(m_batchsize*width,-1,height)proj_key_W = proj_key.permute(0,2,1,3).contiguous().view(m_batchsize*height,-1,width)proj_value = self.value_conv(x)proj_value_H = proj_value.permute(0,3,1,2).contiguous().view(m_batchsize*width,-1,height)proj_value_W = proj_value.permute(0,2,1,3).contiguous().view(m_batchsize*height,-1,width)energy_H = (torch.bmm(proj_query_H, proj_key_H)+self.INF(m_batchsize, height, width)).view(m_batchsize,width,height,height).permute(0,2,1,3)energy_W = torch.bmm(proj_query_W, proj_key_W).view(m_batchsize,height,width,width)concate = self.softmax(torch.cat([energy_H, energy_W], 3))att_H = concate[:,:,:,0:height].permute(0,2,1,3).contiguous().view(m_batchsize*width,height,height)#print(concate)#print(att_H) att_W = concate[:,:,:,height:height+width].contiguous().view(m_batchsize*height,width,width)out_H = torch.bmm(proj_value_H, att_H.permute(0, 2, 1)).view(m_batchsize,width,-1,height).permute(0,2,3,1)out_W = torch.bmm(proj_value_W, att_W.permute(0, 2, 1)).view(m_batchsize,height,-1,width).permute(0,2,1,3)#print(out_H.size(),out_W.size())return self.gamma*(out_H + out_W) + x

🔹 4. S2-MLPv2 Attention

来源:
https://arxiv.org/abs/2108.01072
机制:
Spatial Shift + MLP + 分支融合

def spatial_shift1(x):b,w,h,c = x.size()x[:,1:,:,:c//4] = x[:,:w-1,:,:c//4]x[:,:w-1,:,c//4:c//2] = x[:,1:,:,c//4:c//2]x[:,:,1:,c//2:c*3//4] = x[:,:,:h-1,c//2:c*3//4]x[:,:,:h-1,3*c//4:] = x[:,:,1:,3*c//4:]return xdef spatial_shift2(x):b,w,h,c = x.size()x[:,:,1:,:c//4] = x[:,:,:h-1,:c//4]x[:,:,:h-1,c//4:c//2] = x[:,:,1:,c//4:c//2]x[:,1:,:,c//2:c*3//4] = x[:,:w-1,:,c//2:c*3//4]x[:,:w-1,:,3*c//4:] = x[:,1:,:,3*c//4:]return xclass SplitAttention(nn.Module):def __init__(self,channel=512,k=3):super().__init__()self.channel=channelself.k=kself.mlp1=nn.Linear(channel,channel,bias=False)self.gelu=nn.GELU()self.mlp2=nn.Linear(channel,channel*k,bias=False)self.softmax=nn.Softmax(1)def forward(self,x_all):b,k,h,w,c=x_all.shapex_all=x_all.reshape(b,k,-1,c) a=torch.sum(torch.sum(x_all,1),1) hat_a=self.mlp2(self.gelu(self.mlp1(a))) hat_a=hat_a.reshape(b,self.k,c) bar_a=self.softmax(hat_a) attention=bar_a.unsqueeze(-2) out=attention*x_all out=torch.sum(out,1).reshape(b,h,w,c)return outclass S2Attention(nn.Module):def __init__(self, channels=512 ):super().__init__()self.mlp1 = nn.Linear(channels,channels*3)self.mlp2 = nn.Linear(channels,channels)self.split_attention = SplitAttention()def forward(self, x):b,c,w,h = x.size()x=x.permute(0,2,3,1)x = self.mlp1(x)x1 = spatial_shift1(x[:,:,:,:c])x2 = spatial_shift2(x[:,:,:,c:c*2])x3 = x[:,:,:,c*2:]x_all=torch.stack([x1,x2,x3],1)a = self.split_attention(x_all)x = self.mlp2(a)x=x.permute(0,3,1,2)return x

🔹 5. SimAM

机制: 使用方差引导通道激活,无需参数

import torch
import torch.nn as nnclass SimAM(torch.nn.Module):def __init__(self, channels = None,out_channels = None, e_lambda = 1e-4):super(SimAM, self).__init__()self.activaton = nn.Sigmoid()self.e_lambda = e_lambdadef __repr__(self):s = self.__class__.__name__ + '('s += ('lambda=%f)' % self.e_lambda)return s@staticmethoddef get_module_name():return "simam"def forward(self, x):b, c, h, w = x.size()n = w * h - 1x_minus_mu_square = (x - x.mean(dim=[2,3], keepdim=True)).pow(2)y = x_minus_mu_square / (4 * (x_minus_mu_square.sum(dim=[2,3], keepdim=True) / n + self.e_lambda)) + 0.5 #atbriassreturn x * self.activaton(y)  

🔹 6. SKAttention(Selective Kernel)

机制: 多尺度卷积 + Soft attention 选择合适卷积核

class SKAttention(nn.Module):def __init__(self, channel=512,kernels=[1,3,5,7],reduction=16,group=1,L=32):super().__init__()self.d=max(L,channel//reduction)self.convs=nn.ModuleList([])for k in kernels:self.convs.append(nn.Sequential(OrderedDict([('conv',nn.Conv2d(channel,channel,kernel_size=k,padding=k//2,groups=group)),('bn',nn.BatchNorm2d(channel)),('relu',nn.ReLU())])))self.fc=nn.Linear(channel,self.d)self.fcs=nn.ModuleList([])for i in range(len(kernels)):self.fcs.append(nn.Linear(self.d,channel))self.softmax=nn.Softmax(dim=0)def forward(self, x):bs, c, _, _ = x.size()conv_outs=[]### split atbriassfor conv in self.convs:conv_outs.append(conv(x))feats=torch.stack(conv_outs,0)#k,bs,channel,h,w### fuseU=sum(conv_outs) #bs,c,h,w### reduction channelS=U.mean(-1).mean(-1) #bs,cZ=self.fc(S) #bs,d### calculate attention weightweights=[]for fc in self.fcs:weight=fc(Z)weights.append(weight.view(bs,c,1,1)) #bs,channelattention_weughts=torch.stack(weights,0)#k,bs,channel,1,1attention_weughts=self.softmax(attention_weughts)#k,bs,channel,1,1### fuseV=(attention_weughts*feats).sum(0)return V

🔹 7. NAMAttention(Normalization-based Attention)

机制: 使用 BN 参数的归一化特性引导注意力

import torch.nn as nn
import torch
from torch.nn import functional as Fclass Channel_Att(nn.Module):def __init__(self, channels, t=16):super(Channel_Att, self).__init__()self.channels = channelsself.bn2 = nn.BatchNorm2d(self.channels, affine=True)def forward(self, x):residual = xx = self.bn2(x)weight_bn = self.bn2.weight.data.abs() / torch.sum(self.bn2.weight.data.abs())x = x.permute(0, 2, 3, 1).contiguous()x = torch.mul(weight_bn, x)x = x.permute(0, 3, 1, 2).contiguous()x = torch.sigmoid(x) * residual #return xclass NAMAttention(nn.Module):def __init__(self, channels, out_channels=None, no_spatial=True):super(NAMAttention, self).__init__()self.Channel_Att = Channel_Att(channels)def forward(self, x):x_out1=self.Channel_Att(x)return x_out1  

🔹 8. SOCA(Second-order Channel Attention)

机制: 基于协方差池化和矩阵平方根的高阶通道注意力机制

import numpy as np
import torch
from torch import nn
from torch.nn import initfrom torch.autograd import Functionclass Covpool(Function):@staticmethoddef forward(ctx, input):x = inputbatchSize = x.data.shape[0]dim = x.data.shape[1]h = x.data.shape[2]w = x.data.shape[3]M = h*wx = x.reshape(batchSize,dim,M)I_hat = (-1./M/M)*torch.ones(M,M,device = x.device) + (1./M)*torch.eye(M,M,device = x.device)I_hat = I_hat.view(1,M,M).repeat(batchSize,1,1).type(x.dtype)y = x.bmm(I_hat).bmm(x.transpose(1,2))ctx.save_for_backward(input,I_hat)return y@staticmethoddef backward(ctx, grad_output):input,I_hat = ctx.saved_tensorsx = inputbatchSize = x.data.shape[0]dim = x.data.shape[1]h = x.data.shape[2]w = x.data.shape[3]M = h*wx = x.reshape(batchSize,dim,M)grad_input = grad_output + grad_output.transpose(1,2)grad_input = grad_input.bmm(x).bmm(I_hat)grad_input = grad_input.reshape(batchSize,dim,h,w)return grad_inputclass Sqrtm(Function):@staticmethoddef forward(ctx, input, iterN):x = inputbatchSize = x.data.shape[0]dim = x.data.shape[1]dtype = x.dtypeI3 = 3.0*torch.eye(dim,dim,device = x.device).view(1, dim, dim).repeat(batchSize,1,1).type(dtype)normA = (1.0/3.0)*x.mul(I3).sum(dim=1).sum(dim=1)A = x.div(normA.view(batchSize,1,1).expand_as(x))Y = torch.zeros(batchSize, iterN, dim, dim, requires_grad = False, device = x.device)Z = torch.eye(dim,dim,device = x.device).view(1,dim,dim).repeat(batchSize,iterN,1,1)if iterN < 2:ZY = 0.5*(I3 - A)Y[:,0,:,:] = A.bmm(ZY)else:ZY = 0.5*(I3 - A)Y[:,0,:,:] = A.bmm(ZY)Z[:,0,:,:] = ZYfor i in range(1, iterN-1):ZY = 0.5*(I3 - Z[:,i-1,:,:].bmm(Y[:,i-1,:,:]))Y[:,i,:,:] = Y[:,i-1,:,:].bmm(ZY)Z[:,i,:,:] = ZY.bmm(Z[:,i-1,:,:])ZY = 0.5*Y[:,iterN-2,:,:].bmm(I3 - Z[:,iterN-2,:,:].bmm(Y[:,iterN-2,:,:]))y = ZY*torch.sqrt(normA).view(batchSize, 1, 1).expand_as(x)ctx.save_for_backward(input, A, ZY, normA, Y, Z)ctx.iterN = iterNreturn y@staticmethoddef backward(ctx, grad_output):input, A, ZY, normA, Y, Z = ctx.saved_tensorsiterN = ctx.iterNx = inputbatchSize = x.data.shape[0]dim = x.data.shape[1]dtype = x.dtypeder_postCom = grad_output*torch.sqrt(normA).view(batchSize, 1, 1).expand_as(x)der_postComAux = (grad_output*ZY).sum(dim=1).sum(dim=1).div(2*torch.sqrt(normA))I3 = 3.0*torch.eye(dim,dim,device = x.device).view(1, dim, dim).repeat(batchSize,1,1).type(dtype)if iterN < 2:der_NSiter = 0.5*(der_postCom.bmm(I3 - A) - A.bmm(der_sacleTrace))else:dldY = 0.5*(der_postCom.bmm(I3 - Y[:,iterN-2,:,:].bmm(Z[:,iterN-2,:,:])) -Z[:,iterN-2,:,:].bmm(Y[:,iterN-2,:,:]).bmm(der_postCom))dldZ = -0.5*Y[:,iterN-2,:,:].bmm(der_postCom).bmm(Y[:,iterN-2,:,:])for i in range(iterN-3, -1, -1):YZ = I3 - Y[:,i,:,:].bmm(Z[:,i,:,:])ZY = Z[:,i,:,:].bmm(Y[:,i,:,:])dldY_ = 0.5*(dldY.bmm(YZ) - Z[:,i,:,:].bmm(dldZ).bmm(Z[:,i,:,:]) - ZY.bmm(dldY))dldZ_ = 0.5*(YZ.bmm(dldZ) - Y[:,i,:,:].bmm(dldY).bmm(Y[:,i,:,:]) -dldZ.bmm(ZY))dldY = dldY_dldZ = dldZ_der_NSiter = 0.5*(dldY.bmm(I3 - A) - dldZ - A.bmm(dldY))grad_input = der_NSiter.div(normA.view(batchSize,1,1).expand_as(x))grad_aux = der_NSiter.mul(x).sum(dim=1).sum(dim=1)for i in range(batchSize):grad_input[i,:,:] += (der_postComAux[i] \- grad_aux[i] / (normA[i] * normA[i])) \*torch.ones(dim,device = x.device).diag()return grad_input, Nonedef CovpoolLayer(var):return Covpool.apply(var)def SqrtmLayer(var, iterN):return Sqrtm.apply(var, iterN)class SOCA(nn.Module):# second-order Channel attentiondef __init__(self, channel, reduction=8):super(SOCA, self).__init__()self.max_pool = nn.MaxPool2d(kernel_size=2)self.conv_du = nn.Sequential(nn.Conv2d(channel, channel // reduction, 1, padding=0, bias=True),nn.ReLU(inplace=True),nn.Conv2d(channel // reduction, channel, 1, padding=0, bias=True),nn.Sigmoid())def forward(self, x):batch_size, C, h, w = x.shape  # x: NxCxHxWN = int(h * w)min_h = min(h, w)h1 = 1000w1 = 1000if h < h1 and w < w1:x_sub = xelif h < h1 and w > w1:W = (w - w1) // 2x_sub = x[:, :, :, W:(W + w1)]elif w < w1 and h > h1:H = (h - h1) // 2x_sub = x[:, :, H:H + h1, :]else:H = (h - h1) // 2W = (w - w1) // 2x_sub = x[:, :, H:(H + h1), W:(W + w1)]cov_mat = CovpoolLayer(x_sub) # Global Covariance pooling layercov_mat_sqrt = SqrtmLayer(cov_mat,5) # Matrix square root layer( including pre-norm,Newton-Schulz iter. and post-com. with 5 iteration)cov_mat_sum = torch.mean(cov_mat_sqrt,1)cov_mat_sum = cov_mat_sum.view(batch_size,C,1,1)y_cov = self.conv_du(cov_mat_sum)return y_cov*x

🔹 9. CBAM(Convolutional Block Attention Module)

机制: Channel Attention + Spatial Attention 串联使用

class ChannelAttentionModule(nn.Module):def __init__(self, c1, reduction=16):super(ChannelAttentionModule, self).__init__()mid_channel = c1 // reductionself.avg_pool = nn.AdaptiveAvgPool2d(1)self.max_pool = nn.AdaptiveMaxPool2d(1)self.shared_MLP = nn.Sequential(nn.Linear(in_features=c1, out_features=mid_channel),nn.LeakyReLU(0.1, inplace=True),nn.Linear(in_features=mid_channel, out_features=c1))self.act = nn.Sigmoid()#self.act=nn.SiLU()def forward(self, x):avgout = self.shared_MLP(self.avg_pool(x).view(x.size(0),-1)).unsqueeze(2).unsqueeze(3)maxout = self.shared_MLP(self.max_pool(x).view(x.size(0),-1)).unsqueeze(2).unsqueeze(3)return self.act(avgout + maxout)class SpatialAttentionModule(nn.Module):def __init__(self):super(SpatialAttentionModule, self).__init__()self.conv2d = nn.Conv2d(in_channels=2, out_channels=1, kernel_size=7, stride=1, padding=3)self.act = nn.Sigmoid()def forward(self, x):avgout = torch.mean(x, dim=1, keepdim=True)maxout, _ = torch.max(x, dim=1, keepdim=True)out = torch.cat([avgout, maxout], dim=1)out = self.act(self.conv2d(out))return outclass CBAM(nn.Module):def __init__(self, c1,c2):super(CBAM, self).__init__()self.channel_attention = ChannelAttentionModule(c1)self.spatial_attention = SpatialAttentionModule()def forward(self, x):out = self.channel_attention(x) * xout = self.spatial_attention(out) * outreturn out

🔹 10. GAMAttention

原理图:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

import numpy as np
import torch
from torch import nn
from torch.nn import initclass GAMAttention(nn.Module):#https://paperswithcode.com/paper/global-attention-mechanism-retain-informationdef __init__(self, c1, c2, group=True,rate=4):super(GAMAttention, self).__init__()self.channel_attention = nn.Sequential(nn.Linear(c1, int(c1 / rate)),nn.ReLU(inplace=True),nn.Linear(int(c1 / rate), c1))self.spatial_attention = nn.Sequential(nn.Conv2d(c1, c1//rate, kernel_size=7, padding=3,groups=rate)if group else nn.Conv2d(c1, int(c1 / rate), kernel_size=7, padding=3), nn.BatchNorm2d(int(c1 /rate)),nn.ReLU(inplace=True),nn.Conv2d(c1//rate, c2, kernel_size=7, padding=3,groups=rate) if group else nn.Conv2d(int(c1 / rate), c2, kernel_size=7, padding=3), nn.BatchNorm2d(c2))def forward(self, x):b, c, h, w = x.shapex_permute = x.permute(0, 2, 3, 1).view(b, -1, c)x_att_permute = self.channel_attention(x_permute).view(b, h, w, c)x_channel_att = x_att_permute.permute(0, 3, 1, 2)x = x * x_channel_attx_spatial_att = self.spatial_attention(x).sigmoid()x_spatial_att=channel_shuffle(x_spatial_att,4) #last shuffle out = x * x_spatial_attreturn out  def channel_shuffle(x, groups=2):B, C, H, W = x.size()out = x.view(B, groups, C // groups, H, W).permute(0, 2, 1, 3, 4).contiguous()out=out.view(B, C, H, W) return out

🔹 11. Coordinate attention

class h_sigmoid(nn.Module):def __init__(self, inplace=True):super(h_sigmoid, self).__init__()self.relu = nn.ReLU6(inplace=inplace)def forward(self, x):return self.relu(x + 3) / 6class h_swish(nn.Module):def __init__(self, inplace=True):super(h_swish, self).__init__()self.sigmoid = h_sigmoid(inplace=inplace)def forward(self, x):return x * self.sigmoid(x)
class CA(nn.Module):# Coordinate Attention for Efficient Mobile Network Design'''Recent studies on mobile network design have demonstrated the remarkable effectiveness of channel attention (e.g., the Squeeze-and-Excitation attention) for liftingmodel performance, but they generally neglect the positional information, which is important for generating spatially selective attention maps. In this paper, we propose anovel attention mechanism for mobile iscyy networks by embedding positional information into channel attention, whichwe call “coordinate attention”. Unlike channel attentionthat transforms a feature tensor to a single feature vector iscyy via 2D global pooling, the coordinate attention factorizes channel attention into two 1D feature encoding processes that aggregate features along the two spatial directions, respectively'''def __init__(self, inp, oup, reduction=32):super(CA, self).__init__()mip = max(8, inp // reduction)self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)self.bn1 = nn.BatchNorm2d(mip)self.act = h_swish()self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)def forward(self, x):identity = xn,c,h,w = x.size()pool_h = nn.AdaptiveAvgPool2d((h, 1))pool_w = nn.AdaptiveAvgPool2d((1, w))x_h = pool_h(x)x_w = pool_w(x).permute(0, 1, 3, 2)y = torch.cat([x_h, x_w], dim=2)y = self.conv1(y)y = self.bn1(y)y = self.act(y) x_h, x_w = torch.split(y, [h, w], dim=2)x_w = x_w.permute(0, 1, 3, 2)a_h = self.conv_h(x_h).sigmoid()a_w = self.conv_w(x_w).sigmoid()out = identity * a_w * a_hreturn out   

🔹 12. Efficient Channel Attention(ECA)

import torch.nn as nn
import torch
from torch.nn import functional as Fclass ECAttention(nn.Module):"""Constructs a ECA module.Args:channel: Number of channels of the input feature mapk_size: Adaptive selection of kernel size automg"""def __init__(self, c1,c2, k_size=3):super(ECAttention, self).__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False)self.sigmoid = nn.Sigmoid()def forward(self, x):y = self.avg_pool(x)y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)y = self.sigmoid(y)return x * y.expand_as(x)
http://www.dtcms.com/wzjs/431867.html

相关文章:

  • php导航网站网站seo推广多少钱
  • 广州建网站价格深圳头条新闻
  • wordpress 获取某个分类的文章seo 推广怎么做
  • 潍坊手机网站制作怎么建一个自己的网站
  • 免费建设企业网站公司查询
  • 建设网站域名备案网站排名前十
  • 盐亭县建设局网站seo快排软件
  • allintitle:湛江网站建设 seo酒店seo是什么意思
  • 商河 网站建设软件公司
  • 怎么免费注册网站网络营销教材电子版
  • 小学生做网站国际时事新闻
  • 新闻网站开发的论文如何在百度上发广告
  • 购物网站的推广seo虚拟外链
  • 装修网站合作百度指数只能查90天吗
  • 南阳做网站哪家好网络营销专业技能
  • 网站是怎么做优化营销手段有哪些
  • 沙井做网站的公司小白如何学电商运营
  • 网站设计的工资待遇五个常用的搜索引擎
  • 网站开发购物店官网seo优化找哪家做
  • 论文网站建设与运营百度手机助手下载安卓
  • 手机购物网站 设计网络营销推广平台有哪些
  • 大淘客怎样做网站百度快速收录入口
  • 做网站怎么用国处服务器百度推广在哪里能看到
  • 优秀网站主题营销网站的建造步骤
  • 修改网站的备案主体电商网站定制开发
  • 网站平台做期货新闻稿在线
  • 找人做网赌网站需要多少钱如何做友情链接
  • 网站怎么建设抖音关键词排名优化软件
  • 怎么申请一个免费的网站网络seo首页
  • 网站怎么注销备案号德芙巧克力的软文500字