当前位置: 首页 > wzjs >正文

郴州网站建设企业国内seo排名分析主要针对百度

郴州网站建设企业,国内seo排名分析主要针对百度,网站做的漂浮为什么不动,哈尔滨市建设工程招标网目录 简述6种系统聚类法 实验实例和数据资料: 上机实验步骤: 进行最短距离聚类: 进行最长距离聚类: 进行中间距离聚类: 进行类平均法聚类: 进行重心法聚类: 进行ward.D聚类:…

目录

简述6种系统聚类法

实验实例和数据资料:

上机实验步骤:

进行最短距离聚类:

进行最长距离聚类:

进行中间距离聚类:

进行类平均法聚类:

进行重心法聚类:

进行ward.D聚类:

进行ward.D2聚类:


简述6种系统聚类法

(一)单链接聚类法:也称为最小距离聚类法,它通过计算两个簇中最近的成员之间的距离来确定簇之间的距离。该方法通常会产生长而细的簇,对异常值敏感。

(二)完全链接聚类法:也称为最大距离聚类法,它通过计算两个簇中最远的成员之间的距离来确定簇之间的距离。该方法通常会产生紧凑的簇,对异常值不敏感。

(三)平均链接聚类法:它通过计算两个簇中所有成员之间的平均距离来确定簇之间的距离。该方法可以在一定程度上平衡单链接和完全链接的缺点。

(四)中心链接聚类法:它通过计算两个簇的质心之间的距离来确定簇之间的距离。质心是指簇中所有成员的平均值。该方法产生的簇具有更加均衡的大小。

(五)Ward聚类法:它基于最小方差准则,通过计算将两个簇合并后整体的方差增加量来确定簇之间的距离。该方法倾向于产生方差相对较小的簇。

(六)类平均聚类法:它通过计算两个簇中所有成员之间的平均距离来确定簇之间的距离。类平均聚类法与平均链接聚类法类似,但不同于平均链接聚类法使用所有成员之间的距离,而是只使用两个簇之间的成员之间的距离。

实验实例和数据资料:

P2122) 为了比较我国 31个省、市、自治区 1996年和2007(数据见本章例7.2d3.1)城镇居民生活消费的分布规律,根据调查资料作区域消费类型划分。并将1996年和2007年的数据进行对比分析。今收集了八个反映城镇居民生活消费结构的指标(1996年数据见表1和表2)

表1 八个反映城镇居民生活消费结构的指标

符号

指标

单位

X1

X2

X3

X4

X5

X6

X7

X8

人均食品支出

人均衣着商品支出

人均家庭设备用品及服务支出

人均医疗保健支出

人均交通和通信支出

人均娱乐教育文化服务支出

人均居住支出

人均杂项商品和服务支出

/

/

/

/

/

/

/

/

表2 1996年全国31个省、市、自治区城镇居民消费数据

X1

X2

X3

X4

X5

X6

X7

X8

北京

8170.22

2794.87

1974.25

1717.58

4106.04

3984.86

2125.99

1401.08

天津

7943.06

1950.68

1205.62

1694.29

3468.86

2353.43

2088.62

1007.31

河北

4404.4

1488.11

977.46

1117.3

2149.57

1550.63

1526.28

426.29

山西

3676.65

1627.53

870.91

1020.61

1775.3

2065.44

1612.36

516.84

内蒙古

6117.93

2777.25

1233.39

1394.8

2719.92

2111

1951.05 

943.72

辽宁

5803.9

2100.71

1145.57

1343.05

2589.18

2258.46

1936.10 

852.69

吉林

4658.13

1961.2

908.43

1692.11

2217.87

1935.04 

1932.24

627.3

黑龙江

5069.89

1803.45

796.38

1334.8

1661.35

1396.38

1543.29 

556.16

上海

9822.88

2032.28

1705.47

1350.28

4736.36

4122.07

2847.88

1537.78

江苏

7074.11

2013

1378.85

1122

3135

3290

1564.3

794.00 

浙江

8008.16

2235.21

1400.57

1244.37

4568.32

2848.75

2004.69

947.13

安徽

6370.23

1687.49

898.55

869.89

2411.16

1904.15

1633.55

480.16

福建

7424.67

1685.07

1416.94

935.5

3219.46

2448.36

2013.53

949.19

江西

5221.1

1566.49

1004.15

672.5

1812.78

1671.24

1414.89

471.58

山东

5625.94

2277.03

1269.65

1109.37

2474.83

1909.84

1780.07

665.52

河南

4913.87

1916.99

1281.06

1054.54

1768.28

1911.16

1315.28

660.81

湖北

6259.22

1881.85

1059.22

1033.46

1745.05

1922.83

1456.30 

391.57

湖南

5583.99

1520.35

1146.65

1078.82

2409.83

2080.46

1529.50 

537.51

广东

8856.91

1614.87

1539.09

1122.71

4544.21

3222.40 

2339.12

893.95

广西

5841.16

1015.88

1086.46

776.26

2564.92

2093.99

1622.50 

386.46

海南

6979.22

932.63

1030.79

734.28

2005.73

1923.48

1578.65

408.26

重庆

7245.12

2333.81

1325.91

1245.33

1976.19

1722.66

1376.15

588.70 

四川

6471.84

1727.92

1196.65

1019.04

2185.94

1877.55

1321.54

542.99

贵州

4915.02

1401.85

1083.77

633.72

1870.08

1950.28

1496.49

351.66

云南

5741.01

1356.91

987.24

1085.46

2197.73

2045.29

1384.91

357.61

西藏

5889.48

1528.14

541.46

617.97

500.6

1551.34

963.99

638.89

陕西

6075.58

1915.33

1060.49

1310.19

2019.08

2208.06

1465.81

626.16

甘肃

5162.87

1747.32

939.48

1117.42

1503.61

1547.65

1596

406.37

青海

4777.1

1675.06

890.08

813.13

1742.96

1471.98

1684.78

484.41

宁夏

4895.2

1737.21

1001.82

1158.83

2503.65

1868.42

1497.98

657.99

新疆

5323.5

2036.94

977.8

1179.77

2210.25

1597.99

1275.35

604.55

试对该数据进行聚类分析。​​​​​​​

上机实验步骤:

1.准备数据:根据提供的消费数据,将数据保存在一个Excel文件中,并确保每个地区在所有指标上都有完整的数据。将文件命名为"1996年数据.xlsx"。

2. 加载数据并计算距离矩阵

data=read.xlsx('1996年数据.xlsx',rowNames=T);data  
dist_matrix <- dist(data)  

结果如下

进行最短距离聚类:

j1 <- hclust(dist_matrix, method = "single")  
plot(j1, main = "最短距离聚类树状图")  

结果如下

进行最长距离聚类:

j2 <- hclust(dist_matrix, method = "complete")  
plot(j2, main = "最长距离聚类树状图")  

结果如下

进行中间距离聚类:

j3 <- hclust(dist_matrix, method = "median")  
plot(j3, main = "中间距离聚类树状图")  

结果如下

进行类平均法聚类:

j4 <- hclust(dist_matrix, method = "average")  
plot(j4, main = "类平均法聚类树状图")  

结果如下

进行重心法聚类:

j5 <- hclust(dist_matrix, method = "centroid")  
plot(j5, main = "重心法聚类树状图")

结果如下

进行ward.D聚类:

j6 <- hclust(dist_matrix, method = "ward.D")  
plot(j6, main = "ward.D聚类树状图")  

结果如下

进行ward.D2聚类:

j7 <- hclust(dist_matrix, method = "ward.D2")  
plot(j7, main = "ward.D2聚类树状图") 

结果如下

http://www.dtcms.com/wzjs/42987.html

相关文章:

  • 广州建筑信息平台南宁百度seo
  • 南昌网站设计手机网站自助建站系统
  • 网站怎么做支付宝付款信息流广告
  • 上海做网站的价格昆明seo培训
  • 厦门微信网站建设seo关键词优化最多可以添加几个词
  • 代刷网站推广链接快手app排名优化
  • 温州网站建设服务中心重庆seo研究中心
  • 如何自己做免费网站刚刚济南发通知
  • 公司网站维护好做吗百度账号登录不了
  • html素材免费下载西安seo技术培训班
  • 一做特卖的网站北京网站建设公司案例
  • 北京住房和城乡建设网官网余姚网站seo运营
  • 便宜的做网站公司经典广告语
  • 广州做家教的网站网页设计自学要多久
  • 上海旅游网站建设广告推广语
  • 做a短视频网站seo是什么?
  • 网站商城建设合同百度一下首页网址
  • 免费建站网站一级熟熟俱乐一级夫妇性活五月天噪综合怎么才能创建一个网站
  • 怎么做网站首页图片不会失真seo软文推广
  • 酒店官方网站建设书网络营销的功能有哪些?
  • 福州哪家企业网站建设设计最高端广告公司注册
  • 在线做字网站seo有哪些作用
  • 免费软件制作网站模板如何快速优化网站排名
  • 东营造价信息网优化设计四年级上册语文答案
  • 个人博客网页设计html代码沈阳百度推广排名优化
  • 商丘做网站用什么程序比较好网站运营是做什么的
  • 电商网站的功能有哪些短视频精准获客系统
  • 个人网站建设 优帮云平台做推广的技巧
  • 万网独立网站建设外包推广公司
  • 招聘网站怎么做介绍国家提供的免费网课平台