当前位置: 首页 > wzjs >正文

孝仙洪高速公路建设指挥部网站windows优化大师靠谱吗

孝仙洪高速公路建设指挥部网站,windows优化大师靠谱吗,旅游网站建设目标,武汉模板自助建站文章目录 1.数据预处理1.1 设置GPU1.2 数据导入1.3 数据检查 2. 数据分析2.1 数据分布分析2.2 相关性分析 3. LSTM模型3.1 划分数据集3.2 数据集构建3.3 定义模型 4. 训练模型4.1 定义训练函数4.2 定义测试函数4.3 训练模型 5. 模型评估5.1 Loss与Accuracy图 6. 总结 &#x1f…

文章目录

  • 1.数据预处理
    • 1.1 设置GPU
    • 1.2 数据导入
    • 1.3 数据检查
  • 2. 数据分析
    • 2.1 数据分布分析
    • 2.2 相关性分析
  • 3. LSTM模型
    • 3.1 划分数据集
    • 3.2 数据集构建
    • 3.3 定义模型
  • 4. 训练模型
    • 4.1 定义训练函数
    • 4.2 定义测试函数
    • 4.3 训练模型
  • 5. 模型评估
    • 5.1 Loss与Accuracy图
  • 6. 总结

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

1.数据预处理

1.1 设置GPU

import torch.nn as nn
import torch.nn.functional as F
import torchvision,torchdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

device(type=‘cpu’)

1.2 数据导入

import numpy             as np
import pandas            as pd
import seaborn           as sns
from sklearn.model_selection   import train_test_split
import matplotlib.pyplot as plt
plt.rcParams['savefig.dpi'] = 500 #图片像素
plt.rcParams['figure.dpi']  = 500 #分辨率plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签import warnings 
warnings.filterwarnings("ignore")DataFrame=pd.read_excel('dia.xls')
DataFrame.head()
卡号性别年龄高密度脂蛋白胆固醇低密度脂蛋白胆固醇极低密度脂蛋白胆固醇甘油三酯总胆固醇脉搏舒张压高血压史尿素氮尿酸肌酐体重检查结果是否糖尿病
0180544210381.252.991.070.645.31838304.99243.35010
1180544220311.151.990.840.503.98856304.72391.04710
2180544230271.292.210.690.604.19736105.87325.75110
3180544240330.932.010.660.843.60836002.40203.24020
4180544250361.172.830.830.734.83856704.09236.84300
DataFrame.shape

(1006, 16)

1.3 数据检查

# 查看数据是否有缺失值
print('数据缺失值---------------------------------')
print(DataFrame.isnull().sum())

数据缺失值---------------------------------
卡号 0
性别 0
年龄 0
高密度脂蛋白胆固醇 0
低密度脂蛋白胆固醇 0
极低密度脂蛋白胆固醇 0
甘油三酯 0
总胆固醇 0
脉搏 0
舒张压 0
高血压史 0
尿素氮 0
尿酸 0
肌酐 0
体重检查结果 0
是否糖尿病 0
dtype: int64

# 查看数据是否有重复值
print('数据重复值---------------------------------')
print('数据集的重复值为:'f'{DataFrame.duplicated().sum()}')

数据重复值---------------------------------
数据集的重复值为:0

2. 数据分析

2.1 数据分布分析

feature_map = {'年龄': '年龄','高密度脂蛋白胆固醇': '高密度脂蛋白胆固醇','低密度脂蛋白胆固醇': '低密度脂蛋白胆固醇','极低密度脂蛋白胆固醇': '极低密度脂蛋白胆固醇','甘油三酯': '甘油三酯','总胆固醇': '总胆固醇','脉搏': '脉搏','舒张压':'舒张压','高血压史':'高血压史','尿素氮':'尿素氮','尿酸':'尿酸','肌酐':'肌酐','体重检查结果':'体重检查结果'
}
plt.figure(figsize=(15, 10))for i, (col, col_name) in enumerate(feature_map.items(), 1):plt.subplot(3, 5, i)sns.boxplot(x=DataFrame['是否糖尿病'], y=DataFrame[col])plt.title(f'{col_name}的箱线图', fontsize=14)plt.ylabel('数值', fontsize=12)plt.grid(axis='y', linestyle='--', alpha=0.7)plt.tight_layout()
plt.show()

在这里插入图片描述

2.2 相关性分析

import plotly
import plotly.express as px# 删除列 '卡号'
DataFrame.drop(columns=['卡号'], inplace=True)
# 计算各列之间的相关系数
df_corr = DataFrame.corr()# 相关矩阵生成函数
def corr_generate(df):fig = px.imshow(df,text_auto=True,aspect="auto",color_continuous_scale='RdBu_r')fig.show()# 生成相关矩阵
corr_generate(df_corr)

3. LSTM模型

3.1 划分数据集

from sklearn.preprocessing import StandardScaler# '高密度脂蛋白胆固醇'字段与糖尿病负相关,故而在 X 中去掉该字段
X = DataFrame.drop(['是否糖尿病','高密度脂蛋白胆固醇'],axis=1)
y = DataFrame['是否糖尿病']# 数据集标准化处理
sc_X    = StandardScaler()
X = sc_X.fit_transform(X)X = torch.tensor(np.array(X), dtype=torch.float32)
y = torch.tensor(np.array(y), dtype=torch.int64)train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.2,random_state=1)
# 维度扩增使其符合LSTM模型可接受shape
train_X = train_X.unsqueeze(1)
test_X  = test_X.unsqueeze(1)
train_X.shape, train_y.shape

(torch.Size([804, 1, 13]), torch.Size([804]))

3.2 数据集构建

from torch.utils.data import TensorDataset, DataLoadertrain_dl = DataLoader(TensorDataset(train_X, train_y),batch_size=64, shuffle=False)test_dl  = DataLoader(TensorDataset(test_X, test_y),batch_size=64, shuffle=False)

3.3 定义模型

class model_lstm(nn.Module):def __init__(self):super(model_lstm, self).__init__()self.lstm0 = nn.LSTM(input_size=13 ,hidden_size=200, num_layers=1, batch_first=True)self.lstm1 = nn.LSTM(input_size=200 ,hidden_size=200, num_layers=1, batch_first=True)self.fc0   = nn.Linear(200, 2)def forward(self, x):out, hidden1 = self.lstm0(x) out, _ = self.lstm1(out, hidden1) out    = out[:, -1, :]  # 只取最后一个时间步的输出out    = self.fc0(out) return out   model = model_lstm().to(device)
model

model_lstm(
(lstm0): LSTM(13, 200, batch_first=True)
(lstm1): LSTM(200, 200, batch_first=True)
(fc0): Linear(in_features=200, out_features=2, bias=True)
)

4. 训练模型

4.1 定义训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)          # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # grad属性归零loss.backward()        # 反向传播optimizer.step()       # 每一步自动更新# 记录acc与losstrain_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc  /= sizetrain_loss /= num_batchesreturn train_acc, train_loss

4.2 定义测试函数

def test (dataloader, model, loss_fn):size        = len(dataloader.dataset)  # 测试集的大小num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss        = loss_fn(target_pred, target)test_loss += loss.item()test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_acc  /= sizetest_loss /= num_batchesreturn test_acc, test_loss

4.3 训练模型

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4   # 学习率
opt        = torch.optim.Adam(model.parameters(),lr=learn_rate)
epochs     = 30train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)# 获取当前的学习率lr = opt.state_dict()['param_groups'][0]['lr']template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss, lr))print("="*20, 'Done', "="*20)

Epoch: 1, Train_acc:43.8%, Train_loss:0.693, Test_acc:48.0%, Test_loss:0.682, Lr:1.00E-04
Epoch: 2, Train_acc:52.6%, Train_loss:0.684, Test_acc:62.4%, Test_loss:0.676, Lr:1.00E-04
Epoch: 3, Train_acc:68.4%, Train_loss:0.674, Test_acc:69.8%, Test_loss:0.669, Lr:1.00E-04
Epoch: 4, Train_acc:72.9%, Train_loss:0.662, Test_acc:73.8%, Test_loss:0.661, Lr:1.00E-04
Epoch: 5, Train_acc:76.1%, Train_loss:0.648, Test_acc:74.3%, Test_loss:0.651, Lr:1.00E-04
Epoch: 6, Train_acc:76.4%, Train_loss:0.631, Test_acc:73.8%, Test_loss:0.639, Lr:1.00E-04
Epoch: 7, Train_acc:76.1%, Train_loss:0.611, Test_acc:74.3%, Test_loss:0.625, Lr:1.00E-04
Epoch: 8, Train_acc:76.0%, Train_loss:0.588, Test_acc:75.2%, Test_loss:0.610, Lr:1.00E-04
Epoch: 9, Train_acc:75.0%, Train_loss:0.564, Test_acc:75.2%, Test_loss:0.595, Lr:1.00E-04
Epoch:10, Train_acc:75.0%, Train_loss:0.541, Test_acc:75.2%, Test_loss:0.581, Lr:1.00E-04
Epoch:11, Train_acc:75.2%, Train_loss:0.521, Test_acc:75.2%, Test_loss:0.569, Lr:1.00E-04
Epoch:12, Train_acc:75.7%, Train_loss:0.504, Test_acc:75.7%, Test_loss:0.559, Lr:1.00E-04
Epoch:13, Train_acc:75.7%, Train_loss:0.491, Test_acc:75.7%, Test_loss:0.550, Lr:1.00E-04
Epoch:14, Train_acc:75.6%, Train_loss:0.480, Test_acc:76.7%, Test_loss:0.543, Lr:1.00E-04
Epoch:15, Train_acc:75.7%, Train_loss:0.472, Test_acc:76.2%, Test_loss:0.535, Lr:1.00E-04
Epoch:16, Train_acc:76.7%, Train_loss:0.465, Test_acc:76.2%, Test_loss:0.529, Lr:1.00E-04
Epoch:17, Train_acc:77.4%, Train_loss:0.459, Test_acc:76.7%, Test_loss:0.522, Lr:1.00E-04
Epoch:18, Train_acc:77.9%, Train_loss:0.454, Test_acc:77.2%, Test_loss:0.516, Lr:1.00E-04
Epoch:19, Train_acc:78.4%, Train_loss:0.450, Test_acc:77.7%, Test_loss:0.511, Lr:1.00E-04
Epoch:20, Train_acc:78.2%, Train_loss:0.446, Test_acc:77.2%, Test_loss:0.506, Lr:1.00E-04
Epoch:21, Train_acc:78.2%, Train_loss:0.442, Test_acc:77.2%, Test_loss:0.501, Lr:1.00E-04
Epoch:22, Train_acc:78.6%, Train_loss:0.439, Test_acc:77.2%, Test_loss:0.496, Lr:1.00E-04
Epoch:23, Train_acc:78.9%, Train_loss:0.436, Test_acc:77.2%, Test_loss:0.492, Lr:1.00E-04
Epoch:24, Train_acc:78.9%, Train_loss:0.433, Test_acc:77.7%, Test_loss:0.488, Lr:1.00E-04
Epoch:25, Train_acc:79.2%, Train_loss:0.430, Test_acc:77.7%, Test_loss:0.484, Lr:1.00E-04
Epoch:26, Train_acc:79.2%, Train_loss:0.427, Test_acc:78.2%, Test_loss:0.481, Lr:1.00E-04
Epoch:27, Train_acc:79.4%, Train_loss:0.425, Test_acc:79.2%, Test_loss:0.477, Lr:1.00E-04
Epoch:28, Train_acc:79.4%, Train_loss:0.423, Test_acc:79.2%, Test_loss:0.474, Lr:1.00E-04
Epoch:29, Train_acc:79.5%, Train_loss:0.421, Test_acc:79.2%, Test_loss:0.471, Lr:1.00E-04
Epoch:30, Train_acc:79.6%, Train_loss:0.418, Test_acc:79.7%, Test_loss:0.467, Lr:1.00E-04
==================== Done ====================

5. 模型评估

5.1 Loss与Accuracy图

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率from datetime import datetime
current_time = datetime.now() # 获取当前时间epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.xlabel(current_time) # 打卡请带上时间戳,否则代码截图无效plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

6. 总结

本周主要实现了实现了对于上一次糖尿病预测模型的优化。通过实践,更加深入地了解了LSTM模型的相关优化。

http://www.dtcms.com/wzjs/426874.html

相关文章:

  • 怎样做网站反链html网页制作代码
  • 建设网站西安软件开发工程师
  • 深圳最大的招聘网站是什么淘宝seo排名优化软件
  • 一起做英语作业网站青岛seo结算
  • 湘潭网站建设选择湘潭振企网站建设网站怎么添加外链
  • 网站建设外包协议网上推广用什么平台推广最好
  • 腾讯分分彩做号网站最新的域名网站
  • 爬虫 网站开发实例项目推广网
  • 设计排版网站合肥seo网站建设
  • 长沙计算机培训机构哪家最好优化设计电子课本
  • 深圳网站专业制作提升关键词
  • 网站开发技术文档免费永久个人域名注册
  • 做电影网站有什么好处和坏处软文营销的技巧
  • 做电商网站注意什么问题自媒体怎么赚钱
  • 做二手车按揭的网站西安seo排名优化推广价格
  • 黄页88网官网首页黑帽seo培训
  • 创新的沈阳网站建设举出最新的网络营销的案例
  • wordpress数字主题seo服务深圳
  • 1)_童装网站建设目标产品策划方案怎么做
  • 网站互动深圳seo公司助力网络营销飞跃
  • 手机网站制作推广定制2021最火关键词
  • 外贸网站建设多少钱郑州网站优化
  • 关闭网站怎么不保存我做的更改seo策略工具
  • 网站办理公安备案如何做地推推广技巧
  • 路由器上做网站从事网络营销的公司
  • seo厂家费用低搜索引擎优化关键词的处理
  • 全国大型免费网站建设长沙营销推广
  • 北京哪里有教怎么做网站的网站案例分析
  • 和建设银行类似的网站赣州网站建设公司
  • 上海医疗器械网站前置审批开发网站建设公司