当前位置: 首页 > wzjs >正文

htm网站模板新郑网络推广外包

htm网站模板,新郑网络推广外包,手机网站建设需求分析,机械公司网站建设生成对抗网络(Generative Adversarial Network, GAN)是一种通过对抗训练生成数据的深度学习模型,由生成器(Generator)和判别器(Discriminator)两部分组成,其核心思想源于博弈论中的零…

  生成对抗网络(Generative Adversarial Network, GAN)是一种通过对抗训练生成数据的深度学习模型,由生成器(Generator)和判别器(Discriminator)两部分组成,其核心思想源于博弈论中的零和博弈。

一、核心组成

生成器(G)

  目标:生成逼真的假数据(如图像、文本),试图欺骗判别器。
输入:随机噪声(通常服从高斯分布或均匀分布)。
输出:合成数据(如假图像)。

判别器(D)

  目标:区分真实数据(来自训练集)和生成器合成的假数据。
输出:概率值(0到1),表示输入数据是真实的概率。

二、关于对抗训练

1. 动态博弈

  1)生成器尝试生成越来越逼真的数据,使得判别器无法区分真假。
2)判别器则不断优化自身,以更准确地区分真假数据。
3)两者交替训练,最终达到纳什均衡(生成器生成的数据与真实数据分布一致,判别器无法区分,输出概率恒为0.5)。

2. 优化目标(极小极大博弈)

min⁡Gmax⁡DV(D,G)=Ex∼pdata[logD(x)]+Ez∼pz[log(1−D(G(z)))]\min_{G}{\max_D}V(D,G)=E_{x\sim p_{data}}[logD(x)]+E_{z\sim p_z}[log(1-D(G(z)))]GminDmaxV(D,G)=Expdata[logD(x)]+Ezpz[log(1D(G(z)))]

  其中,
D(x)D(x)D(x):判别器对真实数据的判别结果;
G(z)G(z)G(z):生成器生成的假数据;
判别器希望最大化V(D,G)V(D,G)V(D,G)(正确分类真假数据);
生成器希望最小化V(D,G)V(D,G)V(D,G)(让判别器无法区分)。

3.交替更新

1) 固定生成器,训练判别器:

  用真实数据(标签1)和生成数据(标签0)训练判别器,提高其鉴别能力。

2) 固定判别器,训练生成器:

  通过反向传播调整生成器参数,使得判别器对生成数据的输出概率接近1(即欺骗判别器)。

三、典型应用

  图像生成:生成逼真的人脸、风景、艺术画(如 DCGAN、StyleGAN);
图像编辑:图像修复(填补缺失区域)、风格迁移(如将照片转为油画风格);
数据增强:为小样本任务生成额外的训练数据;
超分辨率重建:将低分辨率图像恢复为高分辨率图像。

四、优势与挑战

优势

  无监督学习:无需对数据进行标注,仅通过真实数据即可训练(适用于标注成本高的场景)。

  生成高质量数据:相比其他生成模型(如变分自编码器 VAE),GAN 在图像生成等任务中往往能生成更逼真、细节更丰富的数据。

  灵活性:生成器和判别器可以采用不同的网络结构(如卷积神经网络 CNN、循环神经网络 RNN 等),适用于多种数据类型(图像、文本、音频等)。

挑战

  训练不稳定:容易出现 “模式崩溃”(生成器只生成少数几种相似数据,缺乏多样性)或难以收敛;

  平衡难题:生成器和判别器的能力需要匹配,否则可能一方过强导致另一方无法学习(如判别器太弱,生成器无需优化即可欺骗它);

  可解释性差:生成器的内部工作机制难以解释,生成结果的可控性较弱(近年通过改进模型如 StyleGAN 缓解了这一问题)。

五、Python示例

  使用 PyTorch 实现简单 的GAN 模型,生成手写数字图像。

import matplotlib
matplotlib.use('TkAgg')import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as npplt.rcParams['font.sans-serif']=['SimHei']  # 中文支持
plt.rcParams['axes.unicode_minus']=False  # 负号显示# 设置随机种子,确保结果可复现
torch.manual_seed(42)
np.random.seed(42)# 定义设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 数据加载和预处理
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5,), (0.5,))  # 将图像归一化到 [-1, 1]
])train_dataset = datasets.MNIST(root='./data', train=True,download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)# 定义生成器网络
class Generator(nn.Module):def __init__(self, latent_dim=100, img_dim=784):super(Generator, self).__init__()self.model = nn.Sequential(nn.Linear(latent_dim, 256),nn.LeakyReLU(0.2),nn.BatchNorm1d(256),nn.Linear(256, 512),nn.LeakyReLU(0.2),nn.BatchNorm1d(512),nn.Linear(512, img_dim),nn.Tanh()  # 输出范围 [-1, 1])def forward(self, z):return self.model(z).view(z.size(0), 1, 28, 28)# 定义判别器网络
class Discriminator(nn.Module):def __init__(self, img_dim=784):super(Discriminator, self).__init__()self.model = nn.Sequential(nn.Linear(img_dim, 512),nn.LeakyReLU(0.2),nn.Dropout(0.3),nn.Linear(512, 256),nn.LeakyReLU(0.2),nn.Dropout(0.3),nn.Linear(256, 1),nn.Sigmoid()  # 输出概率值)def forward(self, img):img_flat = img.view(img.size(0), -1)return self.model(img_flat)# 初始化模型
latent_dim = 100
generator = Generator(latent_dim).to(device)
discriminator = Discriminator().to(device)# 定义损失函数和优化器
criterion = nn.BCELoss()
lr = 0.0002
g_optimizer = optim.Adam(generator.parameters(), lr=lr, betas=(0.5, 0.999))
d_optimizer = optim.Adam(discriminator.parameters(), lr=lr, betas=(0.5, 0.999))# 训练函数
def train_gan(epochs):for epoch in range(epochs):for i, (real_imgs, _) in enumerate(train_loader):batch_size = real_imgs.size(0)real_imgs = real_imgs.to(device)# 创建标签real_labels = torch.ones(batch_size, 1).to(device)fake_labels = torch.zeros(batch_size, 1).to(device)# ---------------------#  训练判别器# ---------------------d_optimizer.zero_grad()# 计算判别器对真实图像的损失real_pred = discriminator(real_imgs)d_real_loss = criterion(real_pred, real_labels)# 生成假图像z = torch.randn(batch_size, latent_dim).to(device)fake_imgs = generator(z)# 计算判别器对假图像的损失fake_pred = discriminator(fake_imgs.detach())d_fake_loss = criterion(fake_pred, fake_labels)# 总判别器损失d_loss = d_real_loss + d_fake_lossd_loss.backward()d_optimizer.step()# ---------------------#  训练生成器# ---------------------g_optimizer.zero_grad()# 生成假图像fake_imgs = generator(z)# 计算判别器对假图像的预测fake_pred = discriminator(fake_imgs)# 生成器希望判别器将假图像判断为真g_loss = criterion(fake_pred, real_labels)g_loss.backward()g_optimizer.step()# 打印训练进度if i % 100 == 0:print(f"Epoch [{epoch}/{epochs}] Batch {i}/{len(train_loader)} "f"Discriminator Loss: {d_loss.item():.4f}, Generator Loss: {g_loss.item():.4f}")# 每个epoch结束后,生成一些样本图像if (epoch + 1) % 10 == 0:generate_samples(generator, epoch + 1, latent_dim, device)# 生成样本图像
def generate_samples(generator, epoch, latent_dim, device, n_samples=16):generator.eval()z = torch.randn(n_samples, latent_dim).to(device)with torch.no_grad():samples = generator(z).cpu()# 可视化生成的样本fig, axes = plt.subplots(4, 4, figsize=(8, 8))for i, ax in enumerate(axes.flatten()):ax.imshow(samples[i][0].numpy(), cmap='gray')ax.axis('off')plt.tight_layout()plt.savefig(f"gan_samples/gan_samples_epoch_{epoch}.png")plt.close()generator.train()# 训练模型
train_gan(epochs=50)# 生成最终样本
generate_samples(generator, "final", latent_dim, device)

最终生成的样本:
在这里插入图片描述

六、小结

  GAN通过对抗机制实现了强大的生成能力,成为生成模型领域的里程碑技术。衍生变体(如CGAN、CycleGAN等)进一步扩展了其应用场景。



End.

http://www.dtcms.com/wzjs/424174.html

相关文章:

  • 纸 技术支持 东莞网站建设成都seo培训
  • wordpress anzhuo在线观看的seo综合查询
  • 知乎 拒绝 朋友 做网站网络营销专业学什么课程
  • 公安部发网站备案通知培训总结心得体会
  • 做机械的有什么网站怎么做网上销售
  • 响应式网站的意义浏阳廖主任打人案
  • wap网站开发作业房地产最新消息
  • 网站建设有什么系统营销团队
  • 二级网站排名做不上去提高工作效率的句子
  • 微网站制作工具有哪些做教育培训应该注册什么公司
  • 渠道合作平台抖音seo软件
  • 做网站怎么备案免费b站推广短视频
  • python为什么叫爬虫厦门seo排名优化公司
  • 炫酷网站推荐怎样在网上做宣传
  • 买的网站模板里面是什么百度一下 你就知道首页官网
  • 链接网站制作成都网络推广外包公司哪家好
  • csdn 个人网站建设nba最新交易一览表
  • wordpress 执行了两次aso优化平台有哪些
  • 简述网站建设及维护全过程十大免费cms建站系统介绍
  • 高端网站建设企业公司长沙seo网络公司
  • 搜狗seo查询厦门网站优化公司
  • 做网站项目团队口号模板建站
  • 网站建设外包服务安全管理制度html期末大作业个人网站制作
  • 自己建设一个网站步骤新网站百度seo如何做
  • html标签属性天津seo优化公司
  • 三乡网站建设萝卜建站
  • phython 做的网站百度一下 你就知道官方
  • 长春百度搜索排名优化游戏优化大师有用吗
  • 长沙公司做网站网站排名查询站长之家
  • 自己做网站前端开发宁波seo服务快速推广