当前位置: 首页 > wzjs >正文

网站服务器租用阿里云一年多少钱啊google推广怎么做

网站服务器租用阿里云一年多少钱啊,google推广怎么做,科技服务网站建设方案,wordpress整合openidDay 40 训练 PyTorch 图像数据训练与测试的规范写法单通道图像的规范训练流程数据预处理与加载模型定义训练与测试函数封装模型训练执行 彩色图像的扩展应用数据预处理调整模型结构调整 关键要点总结 知识点回顾: 彩色和灰度图片测试和训练的规范写法:封…

Day 40 训练

  • PyTorch 图像数据训练与测试的规范写法
    • 单通道图像的规范训练流程
      • 数据预处理与加载
      • 模型定义
      • 训练与测试函数封装
      • 模型训练执行
    • 彩色图像的扩展应用
      • 数据预处理调整
      • 模型结构调整
    • 关键要点总结


知识点回顾:

彩色和灰度图片测试和训练的规范写法:封装在函数中
展平操作:除第一个维度batchsize外全部展平
dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭dropout

作业:仔细学习下测试和训练代码的逻辑,这是基础,这个代码框架后续会一直沿用,后续的重点慢慢就是转向模型定义阶段了。

PyTorch 图像数据训练与测试的规范写法

在深度学习项目中,规范的代码结构能极大提升开发效率与代码可维护性。本文将基于 PyTorch 框架,详细讲解图像数据训练和测试的规范写法,从单通道图像到彩色图像,助你构建高效、清晰的模型训练流程。

单通道图像的规范训练流程

数据预处理与加载

我们以 MNIST 手写数字数据集为例,其为单通道灰度图像。数据预处理是模型训练的起点,我们利用 torchvision.transforms 对图像进行转换:

transform = transforms.Compose([transforms.ToTensor(),  # 转换为张量并归一化到[0,1]transforms.Normalize((0.1307,), (0.3081,))  # 使用 MNIST 数据集的均值和标准差进行标准化
])

接着加载数据集并创建数据加载器:

train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transform)batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

模型定义

针对 MNIST 图像尺寸(28×28),定义一个多层感知机(MLP)模型:

class MLP(nn.Module):def __init__(self):super(MLP, self).__init__()self.flatten = nn.Flatten()  # 将 28x28 图像展平为 784 维向量self.layer1 = nn.Linear(784, 128)self.relu = nn.ReLU()self.layer2 = nn.Linear(128, 10)def forward(self, x):x = self.flatten(x)x = self.layer1(x)x = self.relu(x)x = self.layer2(x)return x

训练与测试函数封装

为提升代码复用性与可读性,我们将训练和测试逻辑封装为函数:

def train(model, train_loader, test_loader, criterion, optimizer, device, epochs):model.train()all_iter_losses = []iter_indices = []for epoch in range(epochs):running_loss = 0.0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)running_loss += iter_loss_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单 Batch 损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / totalepoch_test_loss, epoch_test_acc = test(model, test_loader, criterion, device)print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')plot_iter_losses(all_iter_losses, iter_indices)return epoch_test_accdef test(model, test_loader, criterion, device):model.eval()test_loss = 0correct = 0total = 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()avg_loss = test_loss / len(test_loader)accuracy = 100. * correct / totalreturn avg_loss, accuracy

模型训练执行

设置训练轮次并启动训练:

epochs = 2
print("开始训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")

彩色图像的扩展应用

对于彩色图像(如 CIFAR-10 数据集),处理流程与单通道图像类似,主要差异在于:

数据预处理调整

transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))  # 适应彩色图像的标准化
])

模型结构调整

class MLP(nn.Module):def __init__(self):super(MLP, self).__init__()self.flatten = nn.Flatten()  # 将 3x32x32 图像展平为 3072 维向量self.layer1 = nn.Linear(3072, 512)self.relu1 = nn.ReLU()self.dropout1 = nn.Dropout(0.2)self.layer2 = nn.Linear(512, 256)self.relu2 = nn.ReLU()self.dropout2 = nn.Dropout(0.2)self.layer3 = nn.Linear(256, 10)def forward(self, x):x = self.flatten(x)x = self.layer1(x)x = self.relu1(x)x = self.dropout1(x)x = self.layer2(x)x = self.relu2(x)x = self.dropout2(x)x = self.layer3(x)return x

关键要点总结

  1. 数据处理规范化 :利用 DataLoaderDataset 对数据进行分批次处理,提高数据加载效率。
  2. 模型结构清晰化 :明确展平操作在图像任务中的应用,彩色图像需考虑通道维度。
  3. 训练测试函数封装 :将训练和测试逻辑封装为函数,便于参数调整与复用,为多模型对比奠定基础。
  4. 迭代损失记录 :记录每个迭代的损失,绘制损失曲线辅助训练过程分析。

通过遵循上述规范写法,无论是单通道还是彩色图像数据,都能高效地完成模型训练与测试任务,在实际项目中可根据需求灵活扩展与优化。

@浙大疏锦行

http://www.dtcms.com/wzjs/415045.html

相关文章:

  • wordpress作者 页面宝鸡seo优化公司
  • 网络公司做网站的合同百度seo关键词排名
  • 龙岗教育网官网汕头seo推广外包
  • 整套网站建设发帖推广平台
  • 免费产品网站建设世界杯积分榜排名
  • 效果图参考网站有哪些怎么推广网站
  • 郑州高新区做网站开发的公司软文推广软文营销
  • 网站培训培训班百度推广点击软件
  • 抚顺今日头条新闻厦门seo屈兴东
  • 合肥科技网站建设今日国际军事新闻
  • 微信网站与响应式网站河南网站关键词优化代理
  • 个人动态网页制作的方法seo优化前景
  • 邯郸建设局网站资质申报google chrome 网络浏览器
  • 做神马网站优化快速排河南省最新通知
  • 煤炭建设行业协会网站百度搜索seo
  • 网站的手机客户端怎样做怎么网站推广
  • 做外贸网站案例产品运营主要做什么
  • 做企业网站国内发展搜索引擎优化与推广技术
  • 德阳做网站公司代发百度关键词排名
  • 池州网站开发公司招聘网站收录查询爱站
  • 重庆网站制作托管竞价代运营公司
  • 济南槐荫网站开发公司企业网站推广的形式有哪些
  • wordpress 教程 csdn南宁seo产品优化服务
  • 手机网站建设浩森宇特杭州seo
  • 网站栏目描述百度认证有什么用
  • 怎么找人做淘宝网站宁波seo在线优化
  • 南昌网站建设价位百度快照收录入口
  • 聊城高唐网站建设公司百度seo排名优化系统
  • pt网站怎么做个人网站设计模板
  • 如何再腾讯云服务器做网站网站排名优化需要多久